361K subscribers
4.28K photos
800 videos
17 files
4.76K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Physics Simulations — это проект, который предоставляет интерактивные физические симуляции, сгенерированные с помощью Gemini 2.5 Pro . ​

👉 Cимуляции в проекте:

🟡Earth's Magnetic Field: Моделирует магнитное поле Земли как диполь, наклоненный на 11 градусов относительно оси вращения планеты. ​

🟡EM Solenoid: Классическая демонстрация в области электричества и магнетизма, показывающая создание магнитного поля заряженным соленоидом. ​

🟡General Relativity: Иллюстрирует теорию общей относительности Эйнштейна через визуализацию кривизны пространства-времени. ​
GitHub

🟡Planetary Orbit: Демонстрирует орбитальное движение планет и маневр Хоумана для перехода между орбитами. ​

Выглядит очень завораживающее и залипательно.

🟡Симуляции
🟡Github

@ai_machinelearning_big_data

#Gemini #threejs #Physics
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4916🔥11💯3😁1
🧠 Как машинное обучение помогло заглянуть за пределы Стандартной модели в физике

На одной из самых престижных премий мира Breakthrough Prize 2025 отметили участников эксперимента LHCb на Большом адронном коллайдере — в их числе выпускники Школы анализа данных (ШАД) Яндекса и ученые НИУ ВШЭ. Они применили ML, чтобы улучшить анализ данных с коллайдера и сделать возможным открытие тетракварков и пентакварков — нестабильных частиц, предсказанных теорией.

🟠Роль машинного обучения

Для анализа данных эксперимента использовались CatBoost, генеративные нейросети и алгоритмы интеллектуального отбора. Они позволили значительно повысить точность реконструкции траекторий частиц и отбор редких событий среди фона. Эффективность обработки выросла, особенно это заметно при работе с большими потоками коллайдерных данных.

🟠Ключевые открытия

Тетракварки и пентакварки — новые экзотические частицы, состоящие из 4 и 5 кварков (в отличие от привычных протонов и нейтронов). Их открытие подтверждает Стандартную модель, но не переворачивает физику.

CP-нарушение — обнаружена асимметрия между материей и антиматерией, но ее масштаб недостаточен для объяснения дисбаланса во Вселенной.

🟠Главный вопрос: почему материи больше, чем антиматерии?

Ученые подтвердили CP-нарушение, но его недостаточно для полного объяснения асимметрии. Требуется выполнение трёх условий Сахарова, два из которых пока не обнаружены.

🟠Что дальше

Новые эксперименты в Дубне (BM@N, MPD, SPD) и возможное строительство коллайдера в Китае.

Поиск «новой физики» за пределами Стандартной модели.

Полное интервью

@ai_machinelearning_big_data

#ML #AI #CatBoost #Physics #LHCb #ШАД #ВШЭ #BreakthroughPrize
Please open Telegram to view this post
VIEW IN TELEGRAM
👍46🔥2013🥱4
🔥 GOOGLE AI опубликовали пост о настоящем прорыве в области QUANTUM AI

Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».

Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.

Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.

🟠Что это значит простыми словами
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.

Проще говоря:

1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.

2) Затем применяют обратные операции, как будто “перематывают” процесс назад.

3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.

4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.

Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.

Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.

«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.

*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.

🟢 Статья: https://www.nature.com/articles/s41586-025-09526-6

@ai_machinelearning_big_data

#QuantumComputing #Google #AI #Nature #Physics
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥288👍254100🤔70👏53🥰31😐22🤩17🤗13🤓6👌5