В статье исследуется применение обучения с подкреплением (RL) к большим языковым моделям (LLMs) улучшает их способность решать сложные задачи программирования и рассуждений. Авторы сравнивают три модели: общую модель o1, её специализированную версию o1-ioi (адаптированную для соревнований IOI) и более продвинутую модель o3.
Модель o1 значительно превосходит модели без цепочек рассуждений (например, gpt-4o) по показателям на платформе CodeForces.
Специализированная o1-ioi, оптимизированная для соревнований IOI, показывает хорошие результаты с ручными стратегиями, но её успех зависит от дополнительной настройки и тестовых стратегий.
Модель o3, обученная только с RL и без доменно-специфичных стратегий, демонстрирует ещё более высокую производительность, достигая результатов на уровне элитных программистов мира как на CodeForces, так и на IOI.
Применение в реальных задачах:
Масштабирование RL для общего использования, а не применение специализированных ручных стратегий, является эффективным путём достижения передового уровня ИИ в задачах рассуждения и программирования.
Статья
Тред
Релиз состоится 18 февраля в 04:00 (GMT+3). Похоже, что Grok-3 выйдет с режимом рассуждений.
выпустили новую очень сложную оценку рассуждений LLM:
EnigmaEval: 1184 мультимодальные головоломки, настолько сложные, что на их решение группам людей требуется от многих часов до нескольких дней.
Все топ-модели набрали 0% в Hard set и < 10% в Normal set
Scale
От оценки позы до обнаружения объектов в реальном времени - свежие, передовые инструменты компьютерного зрения на Hugging Face, которые очень просты в использовании.
- ViTPose для оценки позы
- RT-DETRv2 для обнаружения объектов в реальном времени
- DAB-DETR улучшает оригинальный DETR, решая проблемы медленного обучения
- DepthPro от Apple для оценки глубины на одном изображении, выдавая расстояния на уровне пикселей в метрах менее чем за секунду.
Свежий инструмент, который представляет собой готовое решение для создания десктопного GUI-агента. С его помощью можно отдавать команды и автоматизировать задачи на ПК (Windows и macOS) через веб-интерфейс, доступный с любого устройства с интернетом.
Github
@ai_machinelearning_big_data
#news #ai #ml #openai #grok #grok3 #Microsoft #ScaleAI #elonmusk #cv #sota #opensource #agents
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍50❤14🔥9😁2🐳1
  ⚡️ Magma-8B – это экспериментальная модель от Microsoft, которая объединяет обработку текста и изображений в одном решении для ИИ-агентов. 
Чем полезен инструмент:
- Мультимодальность: Возможность работать с изображениями, видео и текстом позволяет строить комплексные системы – от навигации по пользовательским интерфейсам до управления робототехникой.
Агентские возможности: Модель не просто описывает содержимое картинки, а умеет генерировать план действий, что особенно ценно для интерактивных приложений.
- ИспользованиеSet-of-Mark и Trace-of-Mark, помогает связать визуальные элементы с текстовыми командами, обеспечивая более точное понимание и планирование.
Magma-8B специально разработан для сценариев работы с агентами – акцент не только на генерации текста, но и на взаимодействии с реальными объектами (например, интерфейсами).
Модель обучалась на разнообразных источниках, включая неразмеченные видео, в результате этого удалось добиться понимания динамики и пространственных отношений в видео.
Современные технические решения и масштабируемость, что позволяет адаптировать модель под разные задачи.
Минусы:
- На данном этапе модель ориентирована на исследовательские проекты, поэтому может требовать доработки перед использованием в боевых условиях.
- Ограничения по языкам: основной фокус сделан на английском, что может усложнить работу с другими языками.
Возможны нестабильные результаты - в некоторых сценариях, особенно если задача выходит за рамки обучающих данных, что требует осторожности при внедрении в реальные приложения.
В целом, Magma-8B – это интересный экспериментальный инструмент, который может стать отправной точкой для создания новых, более «умных» агентных систем, объединяющих восприятие и действие в одном флаконе.
https://huggingface.co/microsoft/Magma-8B
#microsoft #magma #multimodal
Чем полезен инструмент:
- Мультимодальность: Возможность работать с изображениями, видео и текстом позволяет строить комплексные системы – от навигации по пользовательским интерфейсам до управления робототехникой.
Агентские возможности: Модель не просто описывает содержимое картинки, а умеет генерировать план действий, что особенно ценно для интерактивных приложений.
- ИспользованиеSet-of-Mark и Trace-of-Mark, помогает связать визуальные элементы с текстовыми командами, обеспечивая более точное понимание и планирование.
Magma-8B специально разработан для сценариев работы с агентами – акцент не только на генерации текста, но и на взаимодействии с реальными объектами (например, интерфейсами).
Модель обучалась на разнообразных источниках, включая неразмеченные видео, в результате этого удалось добиться понимания динамики и пространственных отношений в видео.
Современные технические решения и масштабируемость, что позволяет адаптировать модель под разные задачи.
Минусы:
- На данном этапе модель ориентирована на исследовательские проекты, поэтому может требовать доработки перед использованием в боевых условиях.
- Ограничения по языкам: основной фокус сделан на английском, что может усложнить работу с другими языками.
Возможны нестабильные результаты - в некоторых сценариях, особенно если задача выходит за рамки обучающих данных, что требует осторожности при внедрении в реальные приложения.
В целом, Magma-8B – это интересный экспериментальный инструмент, который может стать отправной точкой для создания новых, более «умных» агентных систем, объединяющих восприятие и действие в одном флаконе.
pip install torchvision Pillow open_clip_torchhttps://huggingface.co/microsoft/Magma-8B
#microsoft #magma #multimodal
👍32❤11🔥8
  С 26 февраля Advanced Voice на базе GPT-4o mini доступна бесплатным пользователям ChatGPT на всех платформах.
Free tier имеет ежедневные ограничения на использование входных и выходных аудиоданных. Пользователи ChatGPT Plus могут использовать полную версию Advanced Voice на основе GPT-4o с дневным лимитом, который в 5 раз превышает лимит бесплатной версии, и могут продолжать использовать функции видео и демонстрации экрана в расширенном голосовом режиме. Подписчики ChatGPT Pro не имеют дневного лимита.
OpenAI в X
Microsoft открыла всем пользователям бесплатный доступ к функциям «Think Deeper» и голосовому управлению Copilot, а также снимет предыдущие ограничения на использование для бесплатных пользователей. Это означает, что пользователи могут вести неограниченное количество "бесед" и голосовых взаимодействий с Copilot. Think Deeper работает на основе модели логического вывода OpenAI o1, которую Microsoft сделала бесплатной в прошлом месяце.
microsoft.com
Octave, TTS-модель, анонсированная в конце декабря 2024 года, стала доступной через web и API. Модель умеет не просто "читать" слова, а понимает их смысл в контексте. Octave способна отыгрывать персонажей, генерировать голоса по запросу и изменять эмоциональную окраску и стиль речи.
Благодаря функции Voice Design, Octave может создать любой ИИ-голос по текстовому описанию. От "терпеливого, чуткого консультанта с голосом ASMR" до "средневекового рыцаря" – Octave воплотит любую фантазию. В ближайшем будущем планируется запуск функции клонирования голоса.
В ходе слепого сравнительного исследования, Octave превзошла систему ElevenLabs Voice Design по качеству звука (71,6%), естественности (51,7%) и соответствию голоса заданному описанию (57,7%).
hume.ai
DeepSeek объявил о введении скидок до 75% на использование своих AI-моделей в непиковые часы. Это решение может оказать давление на конкурентов как в Китае, так и за рубежом, вынуждая их пересматривать свои ценовые стратегии. Согласно информации на сайте компании, в период с 16:30 до 00:30 по Гринвичу стоимость использования API DeepSeek будет значительно снижена. Для моделей R1 и V3 скидки составят 75% и 50% соответственно.
reuters.com
Samsung выпустит первую потребительскую серию PCIe 5.0 SSD 9100 Pro в марте. Впервые среди NVMe SSD от Samsung в линейке будет модель с 8 ТБ (ожидается, что будет доступен во второй половине 2025 года). В спецификации M.2 предусмотрены две дополнительные версии с радиатором или без него, с тремя конфигурациями: 1 ТБ (199,99 долл. США), 2 ТБ (299,99 долл. США) и 4 ТБ (549,99 долл. США).
Серия 9100 Pro демонстрирует значительные улучшения: в ней используется специализированный контроллер и флэш-память V-NAND TLC 7-го поколения. В синтетических тестах скорости последовательного чтения и записи достигают 14,8 ГБ/с и 13,4 ГБ/с, что вдвое больше, чем у предыдущего поколения 980 Pro и примерно на 2–3 ГБ/с быстрее, чем у конкурирующих продуктов, а производительность случайного чтения и записи улучшена до 2200 тыс./2600 тыс. IOPS, что более чем 2х превышает показатели PCIe 4.0.
news.samsung.com
Hf
@ai_machinelearning_big_data
#news #ai #ml #microsoft #openai #DeepSeek
Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍39❤15🔥11
  Эта модель объединяет данные из различных источников (изображения, видео, данные о робототехнических манипуляциях и тд) и позволяет решать сложные задачи, требующие одновременной обработки текстовой, визуальной и пространственной информации.
Как работает Magma:
Для чего нужен:
@ai_machinelearning_big_data
#AI #ML #LLM #opensource #agents #Microsoft
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍58🔥19❤9👌5
  Что если ИИ-агент в браузере не просто «делает всё сам», а работает вместе с тобой — предлагает план, спрашивает разрешения, показывает действия и обучается на опыте?
Именно так работает Magentic‑UI — новый эксперимент от Microsoft Research.
Magentic‑UI — это платформа, в которой ИИ-агенты помогают людям выполнять сложные задачи в браузере (заполнить форму, найти нужные данные, скачать файлы и т.д.), но при этом не берут всё на себя, а работают в паре с пользователем.
Это не автономный бот, а интерфейс взаимодействия: человек остаётся в центре принятия решений, а агент — в роли помощника.
1) Планирует вместе с тобой
Агент предлагает пошаговый план действий. Ты можешь изменить, утвердить или уточнить его.
2) Показывает, что делает
Все действия видны — клики, ввод текста, навигация. Никакой «магии за кадром».
3) Спрашивает разрешение перед важными действиями
Агент не будет нажимать на кнопки "удалить" или "оплатить" без твоего согласия.
4) Обучается на успешных сценариях
Завершил задачу? Теперь этот план можно переиспользовать в будущем.
Где это может пригодиться?
• Заполнение длинных форм и анкет
• Автоматизация рутинных действий в браузере
• Создание умных пользовательских сценариев (например: «найди и скачай последние отчёты с нужного сайта»)
• Обучение и настройка собственных браузерных агентов
А как насчёт безопасности?
• Агент работает только на разрешённых сайтах (white-list)
• Весь код и браузер изолированы в Docker — ничего не утечёт
• Все действия — прозрачны и отменяемы
@ai_machinelearning_big_data
#microsoft #ai #aiuagent #ml
Please open Telegram to view this post
    VIEW IN TELEGRAM
  12👍70❤18🔥14👌3🤣3⚡2🐳1🎄1
  GUI-Actor — методика на базе VLM, которая вместо традиционной генерации координат текстом при визуальной обработке интерфейса использует внимание внутри модели.
Чтобы уйти от координатного подхода, в GUI-Actor используется специальный токен
<ACTOR>, который "учится" связываться с визуальными патчами, соответствующими целевой области экрана. За один проход модель может запомнить сразу несколько кандидатов на действие.Например, все кнопки "Сохранить" в сложном интерфейсе. Это очень похоже на человеческое восприятие: видеть сам элемент, а не его позиции по осям Х и Y.
Выбрать наиболее подходящий вариант из элементов-кандидатов помогает "верификатор". Это отдельная модель, оценивающая кандидатов от
<ACTOR> и отбирающая самый подходящий для действия. Она не только улучшает точность, но и универсальна: ее можно подключить к другим моделям.Обучение требует минимум ресурсов. Можно заморозить основную VLM (Qwen2-VL-7B) и дообучить только новый action head и токены. Это всего ~100М параметров для 7B-модели.
Комбинация из такого быстрого обучения + верификатор почти догоняет полноценно обученные аналоги, сохраняя общие способности базовой модели. Никакого "катастрофического забывания" - агент учится кликать интерфейсы, не разучиваясь описывать картинки.
Результаты тестов на сложном бенчмарке ScreenSpot-Pro с высоким разрешением и незнакомыми интерфейсами (CAD, научный софт) GUI-Actor-7B с Qwen2-VL показал 40.7 балла, а с Qwen2.5-VL — 44.6, обойдя даже UI-TARS-72B (38.1).
На других тестах (ScreenSpot, ScreenSpot-v2) он тоже лидирует, особенно в иконках и текстовых элементах, демонстрируя крутую адаптацию к разным разрешениям и версткам.
В планах - выпуск еще двух моделей на основе Qwen2.5-VL (3B и 7B), демо GUI-Actor, код для модели-верификатора и датасеты для обучения.
@ai_machinelearning_big_data
#AI #ML #VLM #GUIActor #Microsoft
Please open Telegram to view this post
    VIEW IN TELEGRAM
  5👍49❤20🔥15🥰2
  Microsoft Research представила методы, усиливающие способность языковых моделей, от компактных до гигантских к сложным рассуждениям. Технологии фокусируются на 3 направлениях: архитектура малых моделей, математическая строгость и кросс-доменное обобщение.
Ключ для маленьких моделей (1.5–7 млрд параметров) в имитации человеческого пошагового мышления.
rStar-Math использует алгоритм MCTS в цикле самообучения: сначала декомпозиция задачи на шаги, затем Process Preference Model (PPM), который учит модель оценивать качество каждого шага через "метки награды", и наконец — итеративная доработка. За 4 цикла MCTS, стратегия и PPM совместно улучшают результат.
Logic-RL — это фреймворк обучения с подкреплением, который награждает модель только при идеально оформленном ходе рассуждений и верном ответе, исключая любые попытки выбора обходных путей.
Для математической надежности разработан LIPS, гибрид ИИ и символьных движков. LIPS распределяет задачи: языковая модель распознает паттерны и переформулирует условия (например, неравенства), а символьный решатель выполняет точные преобразования (масштабирование, упрощение).
Чтобы ИИ понимал условия без ошибок, создан нейро-символический фреймворк генерации данных: символьные системы создают задачи, а языковые модели переводят их в "человеческий" текст. Для проверки выводов используются символьная эквивалентность (сравнение формул) и семантическая согласованность (анализ смысла через эмбеддинги), повышая точность на 35%.
Дополнительный бонус — неожиданное обобщение. Тренировка на математике резко улучшила результаты моделей в программировании и естественных науках.
Для унификации подходов создан Chain-of-Reasoning (CoR), позволяющий гибко комбинировать текстовые, программные и символьные рассуждения в одном решении. А Critical Plan Step Learning (CPL) учит ИИ стратегическому планированию: разбивать проблему, выделять ключевые шаги и отбрасывать слабые варианты через комбинацию Plan-based MCTS и Step-APO.
@ai_machinelearning_big_data
#AI #ML #LLM #RL #Reasoning #Microsoft
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤60👍40🔥19🌭5🥰1🤣1
  This media is not supported in your browser
    VIEW IN TELEGRAM
  🔥 Microsoft снова доказывает силу синтетических данных для задач компьютерного зрения!
Современные модели компьютерного зрения с фокусом на человека (Human-centric CV) требуют миллиардов параметров, гигантских датасетов и дорогостоящего инференса. Но можно ли добиться такой же точности, не тратя миллионы?
Исследователи показали: модели можно обучать только на синтетических данных высокого качества — и при этом достигать тех же результатов.
Microsoft представили DAViD — open-source фреймворк, позволяющий создавать цифровых людей с точной геометрией лиц и текстурами.
Проект демонстрирует, как можно использовать синтетические датасеты для:
🟠  Предсказания глубины изображения (Depth Prediction)  
🟠  Оценки поверхностей (Normal Estimation)  
🟠  Сегментации фона и людей на фото/видео (Background & Human Segmentation)
Почему это круто:
🟢  Синтетические данные = пиксельная точность разметки  
🟢  Почти бесконечное разнообразие сцен, ракурсов, освещения и поз  
🟢  Прекрасно масштабируются для обучения моделей с нуля или дообучения
Самое приятное, что Microsoft выложили всё в опенсорс:
✔️ 300 000 сэмплов
✔️ Предобученные модели
✔️ Исходный код фреймворка
🟢 Проект: https://microsoft.github.io/DAViD/
🟢 Статья: https://arxiv.org/abs/2507.15365
🟢 Github: https://github.com/microsoft/DAViD
@ai_machinelearning_big_data
Если ты работаешь с human-centric CV — это мощный старт. Даже без реальных данных.
#cv #microsoft #opensource
Современные модели компьютерного зрения с фокусом на человека (Human-centric CV) требуют миллиардов параметров, гигантских датасетов и дорогостоящего инференса. Но можно ли добиться такой же точности, не тратя миллионы?
Исследователи показали: модели можно обучать только на синтетических данных высокого качества — и при этом достигать тех же результатов.
Microsoft представили DAViD — open-source фреймворк, позволяющий создавать цифровых людей с точной геометрией лиц и текстурами.
Проект демонстрирует, как можно использовать синтетические датасеты для:
Почему это круто:
Самое приятное, что Microsoft выложили всё в опенсорс:
✔️ 300 000 сэмплов
✔️ Предобученные модели
✔️ Исходный код фреймворка
@ai_machinelearning_big_data
Если ты работаешь с human-centric CV — это мощный старт. Даже без реальных данных.
#cv #microsoft #opensource
Please open Telegram to view this post
    VIEW IN TELEGRAM
  11❤74👍53🔥23❤🔥3🤩1🥱1👨💻1
  Microsoft выросла до $4 трлн не за счёт Windows, а благодаря облакам и ИИ.
☁️ Azure строили 10 лет. Сегодня она:
— на втором месте после AWS
— обгоняет Google Cloud по выручке
— питает всё: от Office и Xbox до Copilot и генеративных моделей
Каждый продукт — это ещё один повод платить за облако. Всё работает на одной инфраструктуре.
🚀 Satya Nadella (генеральный директор (CEO) компании Microsoft уже выделил $80 млрд на новые дата-центры.
Ставка очевидна: весь Microsoft переезжает в облако.
@ai_machinelearning_big_data
#ai #ml #news #microsoft
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤72👍29🔥20🤔5👨💻1
  ⚡ Agent Lightning — ускоритель обучения для ИИ-агентов от Microsoft
Agent Lightning — это фреймворк для обучения и оптимизации LLM-агентов с помощью Reinforcement Learning без изменения их кода.
🧠 Поддерживает:
• LangChain
• AutoGen
• OpenAI Agents SDK
• и другие фреймворки на Python
🔧 Как он работает:
• Агент не нужно переписывать — он подключается как есть
• Вся его работа разбивается на отдельные шаги (эпизоды), которые можно анализировать
• Специальный алгоритм LightningRL оценивает, какие действия были полезны, а какие — нет
• Система может учитывать не только финальный результат, но и промежуточные сигналы (награды)
• Эти данные автоматически собираются и используются для дообучения агента
🔥 Преимущества:
• Не требует модификации логики агента
• Можно легко подключить к существующим пайплайнам
• Улучшает точность и устойчивость в сложных задачах: от генерации кода до Text-to-SQL
Отличный инструмент для всех, кто хочет сделать своих LLM-агентов.
🟠 Проект: https://microsoft.com/en-us/research/project/agent-lightning/
🟠 Статья: https://arxiv.org/abs/2508.03680
🟠 Github: https://github.com/microsoft/agent-lightning
@ai_machinelearning_big_data
#agent #reinforcementlearning #mlops #llm #Microsoft
Agent Lightning — это фреймворк для обучения и оптимизации LLM-агентов с помощью Reinforcement Learning без изменения их кода.
🧠 Поддерживает:
• LangChain
• AutoGen
• OpenAI Agents SDK
• и другие фреймворки на Python
🔧 Как он работает:
• Агент не нужно переписывать — он подключается как есть
• Вся его работа разбивается на отдельные шаги (эпизоды), которые можно анализировать
• Специальный алгоритм LightningRL оценивает, какие действия были полезны, а какие — нет
• Система может учитывать не только финальный результат, но и промежуточные сигналы (награды)
• Эти данные автоматически собираются и используются для дообучения агента
🔥 Преимущества:
• Не требует модификации логики агента
• Можно легко подключить к существующим пайплайнам
• Улучшает точность и устойчивость в сложных задачах: от генерации кода до Text-to-SQL
Отличный инструмент для всех, кто хочет сделать своих LLM-агентов.
@ai_machinelearning_big_data
#agent #reinforcementlearning #mlops #llm #Microsoft
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤47🔥21👍14👨💻2
  MAI-Image-1 создаётся с упором на реализм, разнообразие и художественную точность, а не шаблонные стили.
Она особенно сильна в фотореалистичных сценах - свет, тени, отражения и текстуры выглядят максимально естественно.
Microsoft отмечает, что обучение велось на тщательно отобранных данных с участием художников и дизайнеров, чтобы улучшить восприятие и применимость модели в реальных проектах.
Главное преимущество модельки - скорость и качество: можно мгновенно визуализировать идею, а затем доработать её в привычных инструментах.
💡 В ближайшее время модель появится в Copilot и Bing Image Creator. Сейчас MAI-Image-1 доступна для тестирования на LMArena, где можно посмотреть, как ведёт себя модель.
🔗 Подробнее здесь: https://microsoft.ai/news/introducing-mai-image-1-debuting-in-the-top-10-on-lmarena/
@ai_machinelearning_big_data
#Microsoft
Please open Telegram to view this post
    VIEW IN TELEGRAM
  Please open Telegram to view this post
    VIEW IN TELEGRAM
  👍56❤24🔥15😐5🥰4💘3😁2
  ⏱️ Speedrun Science: как ИИ-команды Кремниевой долины работают по 100 часов в неделю
Ведущие AI-команды Кремниевой долины работают по 80–100 часов в неделю, стараясь выпускать модели и функции быстрее конкурентов.
Речь идёт об Anthropic, Microsoft, Google, Meta, Apple и OpenAI, где взят темп «прорыв → релиз» измеряется уже месяцами, а не годами. Основная тяжесть ложится на узкий круг инженеров и исследователей, которые буквально живут между тестами и деплоями, в то время как остальная организация работает в нормальном режиме.
Руководители называют это «уникальным окном возможностей» - и многие принимают нагрузку ради влияния на сферу, любопытства и доли в успехе.
В стартапах даже встречаются контракты с ожидаемыми 80+ часами работы, хотя чаще культура компаний сама к этому подталкивает.
Чтобы поддерживать ритм, компании внедряют ротацию “captains” - инженеров, следящих за работой над моделями 24×7.
Разрыв между «исследованием и внедрением» сжался до «разницы между четвергом и пятницей».
Исследователи говорят, что обучение по-прежнему непредсказуемо, поэтому графики постоянно меняются по итогам реальных результатов. Атмосфера -«speedrun-науки».
Один из фаундеров пошутил:
Источник: wsj.com/tech/ai/ai-race-tech-workers-schedule-1ea9a116
@ai_machinelearning_big_data
#AI #Tech #Startups #SiliconValley #OpenAI #Anthropic #Microsoft #Google
Ведущие AI-команды Кремниевой долины работают по 80–100 часов в неделю, стараясь выпускать модели и функции быстрее конкурентов.
Речь идёт об Anthropic, Microsoft, Google, Meta, Apple и OpenAI, где взят темп «прорыв → релиз» измеряется уже месяцами, а не годами. Основная тяжесть ложится на узкий круг инженеров и исследователей, которые буквально живут между тестами и деплоями, в то время как остальная организация работает в нормальном режиме.
Руководители называют это «уникальным окном возможностей» - и многие принимают нагрузку ради влияния на сферу, любопытства и доли в успехе.
В стартапах даже встречаются контракты с ожидаемыми 80+ часами работы, хотя чаще культура компаний сама к этому подталкивает.
Чтобы поддерживать ритм, компании внедряют ротацию “captains” - инженеров, следящих за работой над моделями 24×7.
Разрыв между «исследованием и внедрением» сжался до «разницы между четвергом и пятницей».
Исследователи говорят, что обучение по-прежнему непредсказуемо, поэтому графики постоянно меняются по итогам реальных результатов. Атмосфера -«speedrun-науки».
Один из фаундеров пошутил:
«Если 9-9-6 — это график с 9 утра до 9 вечера, 6 дней в неделю,
то у нас – 0-0-2: с полуночи до полуночи, с 2-часовым перерывом на выходных».
Источник: wsj.com/tech/ai/ai-race-tech-workers-schedule-1ea9a116
@ai_machinelearning_big_data
#AI #Tech #Startups #SiliconValley #OpenAI #Anthropic #Microsoft #Google
👍61😨56🫡16❤13🏆6🔥5😁3🦄3
  💰 Microsoft объявила, что достигла соглашения с OpenAI по поводу своей доли владения. 
Основные детали:
• Microsoft теперь владеет 27% акций OpenAI, что оценивается в 135 млрд долларов.
• OpenAI обязалась закупить услуг Azure на сумму 250 млрд долларов.
До тех пор, пока OpenAI официально не объявит о создании AGI, Microsoft остаётся её эксклюзивным облачным и API-партнёром с полными правами на текущие модели и интеграции.
После того как AGI будет подтверждён независимой комиссией, эксклюзивность прекращается, однако Microsoft сохранит права собственности и использования всех технологий, разработанных до появления AGI.
https://openai.com/index/next-chapter-of-microsoft-openai-partnership/
@ai_machinelearning_big_data
#OpenAI #Microsoft #agi #llm
Основные детали:
• Microsoft теперь владеет 27% акций OpenAI, что оценивается в 135 млрд долларов.
• OpenAI обязалась закупить услуг Azure на сумму 250 млрд долларов.
До тех пор, пока OpenAI официально не объявит о создании AGI, Microsoft остаётся её эксклюзивным облачным и API-партнёром с полными правами на текущие модели и интеграции.
После того как AGI будет подтверждён независимой комиссией, эксклюзивность прекращается, однако Microsoft сохранит права собственности и использования всех технологий, разработанных до появления AGI.
https://openai.com/index/next-chapter-of-microsoft-openai-partnership/
@ai_machinelearning_big_data
#OpenAI #Microsoft #agi #llm
❤56👍26👀22😁12🔥8😐7🦄5👻3😨3🤔1👨💻1
  🧾 Microsoft раскрыла цифры, которые показывают масштабы расходов OpenAI.
В отчёте для SEC видно: OpenAI потеряла около $11.5 млрд за один квартал.
Это считается по методу учёта доли — Microsoft владеет примерно 27% OpenAI и списала у себя $3.1 млрд. Если 27% = $3.1 млрд убытка, то общий минус - около $11.5 млрд.
Ещё один факт: Microsoft уже перечислила $11.6 млрд из обещанных $13 млрд - почти всё финансирование уже пришло в OpenAI.
И при этом Microsoft за тот же период заработала $27.7 млрд чистой прибыли, так что такой минус она спокойно выдерживает.
Гонка за лидерство в ИИ - это игра, где даже крупнейшие компании готовы сжигать гигантские суммы.
Интересно посмотреть, сколько она ещё продлится и кто выдержит дольше?
theregister.com/2025/10/29/microsoft_earnings_q1_26_openai_loss
@ai_machinelearning_big_data
#opanai #Microsoft #money
В отчёте для SEC видно: OpenAI потеряла около $11.5 млрд за один квартал.
Это считается по методу учёта доли — Microsoft владеет примерно 27% OpenAI и списала у себя $3.1 млрд. Если 27% = $3.1 млрд убытка, то общий минус - около $11.5 млрд.
Ещё один факт: Microsoft уже перечислила $11.6 млрд из обещанных $13 млрд - почти всё финансирование уже пришло в OpenAI.
И при этом Microsoft за тот же период заработала $27.7 млрд чистой прибыли, так что такой минус она спокойно выдерживает.
Гонка за лидерство в ИИ - это игра, где даже крупнейшие компании готовы сжигать гигантские суммы.
Интересно посмотреть, сколько она ещё продлится и кто выдержит дольше?
theregister.com/2025/10/29/microsoft_earnings_q1_26_openai_loss
@ai_machinelearning_big_data
#opanai #Microsoft #money
👍85🤔65🔥29❤17🤓15😐7😁6🤗1
  