Operator — это ИИ-агент, который умеет работать с браузером, заказывать продукты, бронировать билеты и столики в ресторанах искать данные и тп.
Вам нужно просто описать свою задачу, а затем наблюдать в реальном времени, как оператор выполняет её за вас.
Доступ пользователям Pro уже открыт, для остальных обещают в ближайшем времени:
▪operator
В преддверии релиза OpenAI Operator разработчики начали собирать полезные ресурсы, связанные с Operator и другими подобными решениями для автоматизации задач:
▪Github
Imagen 3 дебютирует на первом месте, обойдя Recraft-v3 с впечатляющим отрывом в +70 очков!
Imagen 3 доступен на сайте .
Это тщательно собранный датасет с 3 000 вопросов, разработанный при участии сотен профильных экспертов, чтобы отразить границы человеческих знаний. Лучше всех справляется с ним DeepSeek R1 от, достигая 9.4%, у o1 отставание с 9.1%.
▪Dataset
⭐️ Можем ли мы генерировать изображения с помощью цепочки мыслей CoT?
Давайте проверим и улучшим генерацию изображений шаг за шагом.
Авторегрессионная генерация изображений + масштабирование выводов приводят к существенному улучшению генерации изображений на нескольких бенчмарках.
▪Github ▪Статья ▪HF
Крутейший генератор видео уже на подходе 😁 Движение в реальном времени стало намного лучше!
Здесь, можно подать заявку на ранний доступ:
▪Доступ
▪Новость
Новая функция API, которая позволяет Claude обосновывать свои ответы на предоставленных вами источниках.
Еще Claude может процитировать конкретные предложения и отрывки, которые лежат в основе каждого ответа.
▪Новость
@ai_machinelearning_big_data
#news #ai #ml #machinelearning #deeplearning #openai #pika #chatgpt #Imagen #cot #Anthropic #Claude
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥35👍28❤11🤣2👾1
Команда API Яндекс Карт поделилась тем, как модернизировала Геокодер. Это инструмент, который способен найти точную локацию по запросу "Мяснитская 8" или вообще "Келес ауданы Сыртав 2".
Инженеры построили весь Геокодер с помощью deep learning, который:
- Работает даже с опечатками и народными названиями
- Понимает адреса на разных языках
- Запускается в новой стране за пару недель
- Использует под капотом контрастивное обучение, active learning, аугментацию и LLM-генерацию
- Показывает результат на 14% точнее предыдущей версии
По заверениям разработчиков, чтобы поддерживать такой Геокодер, достаточно всего пять ML-инженеров.
▪️Статья
@ai_machinelearning_big_data
#ai #ml #machinelearning #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
❤41👍27🔥9🤬2🤣1
Вводите промпт и ChatGPT найдет, проанализирует и синтезирует сотни онлайн-ресурсов, чтобы создать развернутый отчет за 10 минут работы, вместо нескольких часов, которые потребовались бы человеку.
Основные моменты:
— Уже доступен для пользователей Pro.
— Агент предоставит полный список источников, а также прокомментирует каждый из них;
— Хорошо подходит для решения задач, связанных с поиском в интернете.
— Набрал 26.6 % на «Последнем экзамене человечества».
ИИ превосходит существующие методы как по точности, так и по вычислительной эффективности, предлагая обновления прогнозов в реальном времени четыре раза в день через Google Cloud, BigQuery и Earth Engine.
Исследователи могут получить доступ как к текущим, так и к историческим прогнозам для анализа и планирования.
Внутри 2 мощных инструмента:
WeatherNext Graph:
- Формирует единый сверхточный прогноз.
- Обновления происходят каждые 6 часов.
- Предсказания делаются на 10 дней вперёд.
- Выдает прогнозы с максимальной точностью.
WeatherNext Gen:
- Генерирует ансамблевые прогнозы из 50 вероятных сценариев.
- Обновление прогноза происходит каждые 12 часов.
- Модель позволяет лучше оценивать риски экстремальных погодных явлений.
Преимущества над традиционными методами:
- Более высокая скорость обработки данных.
- Значительное повышение точности по сравнению с физическими моделями.
- Опенсорс
Внутри много интересного о DeepSeek, Китае, OpenAI, NVIDIA, xAI, Google, Anthropic, Meta, Microsoft, TSMC, Stargate, строительстве мегакластеров, RL, ризонинге и множестве других тем на передовых ИИ тематик.
Очень интересная и наполненная техническими деталями беседа.
- Новая модель: Qwen2.5-Plus теперь обновлен до qwen-plus-0125-exp, с новыми методами пост-тренинга. Разрыв с Qwen2.5-Max значительно сократился.
- Гибкие режимы: Убрали все ограничения на переключение между режимами в течение одной сессии! С.
- Неограниченный ввод: Поддержка текстов длиной более 10 000 символов
- Возможность загружайть файлы txt, pdf, docx, xlsx, pptx, md и другие. Теперь длинный ввод не требует усилий.
Резюме самых интересных открытий за первую неделю с момента появления DS.
Компания Reliance Group Мукеша Амбани, один из крупнейших и наиболее влиятельных индийских конгломератов, строит крупный центр обработки данных в Джамнагаре - небольшом городке в штате Гуджарат, где уже расположены крупные нефтеперерабатывающие и нефтехимические предприятия Reliance.
По сообщениям Bloomberg, общая мощность центра обработки данных, который может стать крупнейшим в мире, составит 3 гигаватта, что значительно увеличит текущую мощность индийских центров обработки данных, которая оценивается менее чем в 1 гигаватт.
Таким образом, он будет в пять раз больше, чем 600-мегаваттный центр Microsoft в Бойдтоне, штат Вирджиния.
Метахранилище - это высокомасштабируемый сервис метаданных во время выполнения, который работает с несколькими движками: BigQuery, Apache Spark, Apache Hive и Apache Flink, и поддерживает открытый формат таблиц Apache Iceberg
@ai_machinelearning_big_data
#DeepSeek #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #openai #google #deepmind #qwen #DataAnalytics #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102❤26🔥10👀2
Он уточнил, что среди инвесторов французских проектов в области ИИ будут компании из Объединенных Арабских Эмиратов, Соединенных Штатов, Канады и самой Франции.
Кроме того, Макрон подчеркнул намерение Парижа сотрудничать с Нью-Дели и Пекином для продвижения технологий искусственного интеллекта. «Мы стремимся к совместной работе с Индией», – сказал он, добавив, что Франция также намерена взаимодействовать с Китаем и Соединенными Штатами, однако не хочет зависеть ни от одной страны.
Относительно обсуждений о возможном запрете использования китайского чат-бота DeepSeek в некоторых странах, Макрон выразил мнение, что запрет технологических решений лишь на основании их происхождения является неоправданным шагом.
Новость
Видео
- Goku: генеративная модель видео на основе потоков.
- Goku+: Модель, которая позиционируется, как модель для генерации видеорекламы и обещает быть в 100 раз дешевле, чем традиционные методы создания видео-рекламы.
Аrxiv
С этим ноутбуком примерно за 2 часа можно обучить модель Qwen 0.5B на математическом наборе данных GSM8K, используя обучение с подкреплением!
Colab Demo
Проект предлагает платформу с готовыми моделями, наборами данных и инструментами для работы с робототехникой на базе PyTorch.
На данный момент доступны предварительно обученные модели, демонстрационные среды для симуляций, а также готовые скрипты для обучения и управления реальными роботами.
Также предоставляются рекомендации по ведению логов и оценке моделей, а также ссылки на исследовательские материалы и примеры кода для профилирования.
Github
Safe Superintellgence(SSI), основанная в июне 2024, еще ничего не выпускает и не зарабатывает, так как первым продуктом обещают сразу ни больше ни меньше — safe AGI.
А пока просто посмотрите на сайт компании, которая УЖЕ привлекла миллиард долларов и собирается привлечь еще. Сила имени.
ssi.inc.
@ai_machinelearning_big_data
#openai #deeplearning #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #qwen #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥64👍38❤12😁7🥱3🤔2🌚1😭1
This media is not supported in your browser
VIEW IN TELEGRAM
Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!
Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU!
✨ Как это работает?
Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова
cuml.patch.apply()
вы "патчите" установленный у вас scikit-learn прямо в памяти.Теперь, когда вы вызываете, например,
KNeighborsClassifier
или PCA
из sklearn:Ключевые преимущества:
2 строчки:import cuml.patch и cuml.patch.apply().
Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.
👇 Как использовать:
Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):
python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend
Добавьте в начало скрипта:
import cuml.patch
cuml.patch.apply()
Используйте scikit-learn как обычно!
Попробуйте и почувствуйте разницу! 😉
▪Блог-пост
▪Colab
▪Github
▪Ускоряем Pandas
@ai_machinelearning_big_data
#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍79🔥45❤10💘3😁1
Команда StepFun AI выпустила Step-Video-TI2V модель для генерации видео (до 102 кадров), производительностью SOTA.
Принимает на вход текстовые описания и изображенияъ 🖼️ + ✍️ = 🎬
На бенчмарке VBench-I2V, моделька показывает лучшие результаты по сравнению с другими современными открытыми моделями для генерации видео из изображения и текста, а также лидирует в публичном рейтинге.
Ключевые особенности:
▪ Контроль движения: Модель предлагает достойный баланс между стабильностью движения и гибкостью, позволяя управлять динамикой в кадре.
▪ Разнообразные движения камеры: Поддерживается имитация различных движений виртуальной камеры для создания более кинематографичных эффектов.
▪ Мастер аниме-стиля: Step-Video-TI2V особенно преуспевает в генерации видео в стиле аниме, открывая новые возможности для фанатов и создателей контента! ✨
▪ Поддержка разных разрешений: Модель может генерировать видео в нескольких вариантах размеров.
@ai_machinelearning_big_data
#AI #VideoGeneration #TextToVideo #ImageToVideo #GenerativeAI #MachineLearning #StepFunAI #ИИ #ГенерацияВидео #Нейросети #Аниме #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤11🔥5🤔2🌚1
Ключевое достижение: Метод обладает рекордно высоким (State-of-the-Art) коэффициентом сжатия данных - 75%!
BPT использует блочную индексацию и агрегацию патчей, что позволяет уменьшить длину последовательностей мэшей примерно на 75% по сравнению с исходными данными.
Это значительно повышает эффективность обработки и генерации высокодетализированных 3D-моделей.
Преимущество: Такое сжатие позволяет эффективно генерировать высокодетализированные 3D-модели, содержащие более 8000 граней (полигонов).
BPT - очень перспективный подходя для 3D-моделирования.
Он позволяет создавать детализированные и топологически точные модели с использованием компактных и эффективных представлений данных.
@ai_machinelearning_big_data
#ml #ai #machinelearning #3d
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍35🔥20❤6
Команда DeepSeek представила DeepSeek-GRM (Generalist Reward Modeling) - новую систему для моделирования вознаграждения (RM), цель которой - улучшить согласованность LLM с общими запросами (general query alignment).
DeepSeek-GRM предлагает новый масштабируемый способ построения более надежных и универсальных систем вознаграждения.
DeepSeek-GRM-27B с масштабированием во время инференса показывает SOTA (или близкие к SOTA) результаты на RM бенчмарках, будучи при этом эффективнее по параметрам, чем гигантские модели, и имея меньше проблем с систематическими ошибками.
LLM-as-a-Judge показывает схожие показатели, но с более низкой производительностью.
Это интересный вектор развития RM, переносящий часть "интеллекта" оценки на этап инференса для повышения качества моделей.
#LLM #AI #MachineLearning #RewardModeling #DeepSeek #ReinforcementLearning #NLP #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍46🔥16❤7🤬1
SkyReels‑V2 - опенсорс генератор видео из текста, который не только соперничает с лучшими закрытыми решениями, но и предлагает уникальное преимущество — теоретически неограниченную длину генераций.
- Story Generation: полный конвейер от генерации текста до последовательного сюжета для видео.
- Image‑to‑Video
- Camera Director: управление виртуальной камерой — смена углов, зум, трекинг.
- Elements‑to‑Video: генерация отдельных объектов или эффектов, которые затем интегрируются в общий видеоряд.
На бенчмарках SkyReels V2 лидирует среди открытых моделей на VBench с 83.9%, оставляя позади Wan2.1, HunyuanVideo и OpenSora 2.0.
▪ Попробовать
▪ Github
▪ Technical Report
▪ Hugging Face
▪ ModelScope
@ai_machinelearning_big_data
#AI #TextToFilm #VideoGeneration #SkyReelsV2 #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥32❤16🤣12
Google разработала масштабируемый процесс *active learning*, который позволяет в десятки тысяч раз сократить объём размеченных данных, необходимых для тонкой настройки больших языковых моделей на сложных задачах — например, при модерации рекламного контента.
1. Стартовая модель (LLM-0) получает промпт и автоматически размечает огромный массив данных.
2. Кластеризация выявляет примеры, где модель путается (наиболее спорные и ценные для обучения).
3. Отбор данных: из этих кластеров выбирают информативные и разнообразные примеры.
4. Экспертная разметка — только для выбранных примеров.
5. Итерации: дообучение модели → новый отбор спорных примеров → разметка → снова обучение.
- Сокращение с 100 000 размеченных примеров до менее 500 при сохранении или улучшении качества.
- Улучшение метрики *Cohen’s Kappa* на 55–65 %.
- В больших продакшн-моделях — до 3–4 порядков меньше данных при сопоставимом или лучшем качестве.
Это метрика, которая показывает, насколько два "судьи" (например, эксперт и модель) согласны между собой с поправкой на случайные совпадения.
- 0.0 — нет согласия (или хуже случайного)
- 0.41–0.60 — умеренное согласие
- 0.61–0.80 — значительное
- 0.81–1.00 — почти полное согласие
В задачах с дисбалансом классов Kappa даёт более честную оценку, чем обычная точность (accuracy).
Чем лучше предыдущих методов:
- Точечная разметка: размечаются только самые информативные примеры.
- Масштабируемость: метод применим к наборам данных с сотнями миллиардов примеров.
- Экономия ресурсов: меньше времени и затрат на разметку.
- Быстрая адаптация: подходит для доменов с быстро меняющимися правилами (реклама, модерация, безопасность).
При умном отборе данных LLM можно адаптировать в тысячи раз быстрее и дешевле, чем при традиционном обучении на больших размеченных наборах.
#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
@ai_machinelearning_big_data
#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍111🔥23❤19⚡3🥰3