330K subscribers
4.18K photos
771 videos
17 files
4.7K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🔥 Релиз Qwen 3 от Alibaba

В релиз вошли 2 MoE-модели и 6 Dense models (плотные модели), размером от 0.6B до 235B параметров.

🏆 Флагманская модель Qwen3-235B-A22B демонстрирует конкурентные результаты в задачах Кодина, математики и общих способностей, уверенно соперничая с передовыми моделями, такими как DeepSeek-R1, o1, o3-mini, Grok-3 и Gemini-2.5-Pro.
Небольшая MoE-модель Qwen3-30B-A3B превосходит QwQ-32B,  использую в 10 раз меньше параметров.
🔥 Компактная модель Qwen3-4B сопоставима по производительности с Qwen2.5-72B-Instruct.
🧠 Поддерживает гибридный режим мышления

Режим размышления активируется при обработке сложных задач, обеспечивая пошаговый анализ запроса и формирование комплексных, глубоких ответов.

Базовый режим используется для повседневных вопросов, позволяя выдавать быстрые и точные ответы с минимальной задержкой.

Процесс обучения модели устроен похожим образом на то, как это сделано в DeepSeek R1.

Поддерживает 119 языков, включая русский.

Лицензирование: Apache 2.0 🔥

🔜Попробовать: https://chat.qwen.ai/
🔜Blog: https://qwenlm.github.io/blog/qwen3/
🔜GitHub: https://github.com/QwenLM/Qwen3
🔜Hugging Face: https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
🔜 ModelScope: https://modelscope.cn/collections/Qwen3-9743180bdc6b48

@ai_machinelearning_big_data

#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥110👍2822
🔥 Qwen2.5-Omni-3B — оптимизированная, компактная Omni модель(3B), доступная для запуска на обычных потребительских GPU!

🔋 Экономия памяти: по сравнению с 7B-версией модель потребляет на 50 % меньше VRAM при обработке длинного контекста (~25 000 токенов).

📺 Мультимодальные режим: поддержка 30-секундных аудио- и видео«из коробки» на 24 GB видеокартах.

🤖 Высокое качество: модель сохраняет свыше 90 % точности ответов и обеспечивает естественный, стабильный синтез речи на уровне 7B-модели.

🔜 Репозиторий GitHub: https://github.com/QwenLM/Qwen2.5-Omni
🔜Hugging Face: https://huggingface.co/Qwen/Qwen2.5-Omni-3B
🔜ModelScope: https://modelscope.cn/models/Qwen/Qwen2.5-Omni-3B

#Qwen #omni #opensource

@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5129🔥18
🔥 В Qwen теперь есть песочницы для генерации и запуска кода.

Web Dev — новый инструмент для создания готовых фронтенд-страниц и приложений в Qwen Chat.

🎨 Просто напишите: «Создай сайт как ...» — и готово! Вы получаете код приложения.

Сгенерировали парочку лендингов и простенькую игру для теста - хорошо понимает промпты, работает шустро.

➡️ Попробовать: https://chat.qwen.ai/?inputFeature=web_dev

@ai_machinelearning_big_data

#qwen #codegenerator #online
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥86👍3519😁6💋4👌2
✔️ Qwen официально выпустили квантованные версии Qwen3!

Теперь Qwen3 можно развернуть через Ollama, LM Studio, SGLang и vLLM — выбирайте удобный формат (GGUF, AWQ или GPTQ) для локального деплоя.

Все модели доступны в коллекции Qwen3 на Hugging Face и ModelScope:

➡️Hugging Face: https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f

➡️ ModelScope: https://modelscope.cn/collections/Qwen3-9743180bdc6b48

@ai_machinelearning_big_data

#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍90🔥3216👏3
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Deep Research в Qwen Chat теперь доступен для всех!*🎉

После нескольких недель тестирования, функция Deep Research официально запущена и открыта для всех пользователей!

Как это работает?
Просто задай любо
й вопрос — например:
"Расскажи что-нибудь про робототехнику."

Qwen уточнит:
🔸 Хочешь узнать про историю, теорию или практическое применение?
🔸 Или скажи: "Не знаю… удиви меня!" 😄

Пока ты пьешь кофе Qwen соберёт для тебя понятный, полезный и глубокий отчёт.

Попробовать💡
🔗 https://chat.qwen.ai/?inputFeature=deep_research

#Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍127🔥4922🥰4🌭1
⚡️Релиз Qwen3-Embedding и Qwen3-Reranker

Главное:
Модели на 0.6B, 4B и 8B параметров
Поддержка 119 языков
Sota на MMTEB, MTEB и MTEB-Code
Открытый код на Hugging Face, GitHub и ModelScope
Доступ через API на Alibaba Cloud

🔍 Применение:
Поиск документов, RAG, классификация, поиск кода и др.

🟡 Qwen3-Embedding: https://huggingface.co/collections/Qwen/qwen3-embedding-6841b2055b99c44d9a4c371f
🟡Qwen3-Reranker: https://huggingface.co/collections/Qwen/qwen3-reranker-6841b22d0192d7ade9cdefea
🟡GitHub: https://github.com/QwenLM/Qwen3-Embedding
🟡Modelscope: https://modelscope.cn/organization/qwen

@ai_machinelearning_big_data

#qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
64👍31🔥19🥰5❤‍🔥2
📌100+ готовых блокнотов Google Collab от Unsloth.

Unsolth выложила в открытый доступ в своем репозитории на Github больше сотни готовых ipynb-блокнотов для запуска различных операций в Google Collab практически всех популярных семейств языковых моделей, BERT, TTS-моделей и VLM:

🟢Llama v.3 -3.2
🟢Qwen v.2-3
🟢Gemma v.2-3 + Code Gemma
🟢Mistral Family
🟢Phi v.3-4
🟠TTS (Sesame, Orpheus, Spark, Oute, Llasa, Whisper)
🟠VLM и MMLM (Llama 3.2, Qwen 2.5VL, Pixtral)
🟠BERT (ModernBERT-large)

Блокноты включают пошаговые руководства и примеры для вызова инструментов, классификации, синтетических данных, подготовки сетов, инференса и файнтюна моделей и
примеры методов GRPO, DPO, SFT, Continued Pretraining, Reasoning и других.

Unsloth известна тем, что помогает делать большие языковые модели быстрее, компактнее и доступнее при помощи динамического квантования, что позволяет запускать их без сильной потери качества . Их технологии ускоряют обучение и настройку ИИ-моделей в 2 раза и экономят до 70% памяти. Инструменты Unsloth, на сегодняшний день, скачали более 10 млн раз.


Есть подробная документация по использованию, а для тех, кто больше привык к Kaggle - такой же набор блокнотов для запуска на этой платформе.


📌Лицензирование: LGPL-3.0-1


🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Notebooks #Github #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10725👍25❤‍🔥9🌭3
This media is not supported in your browser
VIEW IN TELEGRAM
✔️Qwen VLo — новый мультимодальный ИИ от Alibaba, который заточен на понимание и генерацию изображений

📌Как работает:
Модель поэтапно строит изображение слева направо и сверху вниз, уточняя детали на каждом шаге. Это делает итоговую картинку качественной, естественной и согласованной.

Например, можно написать запрос:
«Сделай картинку милого кота» — и она появится.
А можно загрузить фото кота и попросить: «Добавь коту шапку» — и модель отредактирует изображение.

🎯 Что умеет Qwen VLo:
Точная генерация: не путает объекты, сохраняет структуру, меняет, например, цвет машины на фото без искажений
Редактирование по команде: «Сделай фото в стиле Ван Гога» или «добавь солнечное небо» — всё выполняется по инструкции
Глубокое понимание: может обрабатывать сложные задачи — выделение объектов, сегментация, редактирование текста и фона
Мультиязычность: понимает запросы на английском, китайском и других языках — просто опишите, что нужно

🧪 Сейчас Qwen VLo доступна в виде превью через Qwen Chat.

👉 Попробовать: https://chat.qwen.ai
👉 Детали: https://qwenlm.github.io/blog/qwen-vlo/

@ai_machinelearning_big_data

#Qwen #Alibaba #ai #genai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4016🔥13
🚀 Qwen выпустила новую большую модель — Qwen3-235B-A22B-Instruct-2507-FP8!

Qwen только что обновили свою флагманскую модель — Qwen3-235B-A22B, и это просто загляденье.

Команда Qwen официально заявила, что отказывается от гибридного режима (Instruct + Reasoning в одной модели). Вместо этого они будут выпускать отдельные модели: одна для инструкций, другая для рассуждений.
Сегодня вышла Instruct-версия, reasoning-модель уже в разработке.

📊 Метрики впечатляют:
- Обгоняет Kimi K2, у которого, между прочим, *триллион* параметров.
- По ряду бенчмарков Превосходит Claude 4 Opus (non-thinking).
- Особенно мощный прирост — в ARC-AGI

⚙️ Архитектура — MoE (Mixture of Experts), активных параметров всего 22B из 235B. То есть модель намного легче, чем кажется — она вполне реалистична для inference, особенно в FP8-режиме.

📜 Модель отлично справляется с:
- Пониманием инструкций
- Логическим выводом
- Обработкой длинных контекстов до 256K токенов

💬 В будущем планируют дистилляцию в младшие версии, так что праздник будет не только для тех, у кого RTX 6000 на столе.

🟠 HF: https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://huggingface.co/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8
🟠ModelScope: https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507 or https://modelscope.cn/models/Qwen/Qwen3-235B-A22B-Instruct-2507-FP8

Модель действительно стала лучше.
Qwen серьёзно заявляет о себе как об одном из лидеров open-source LLM.

@ai_machinelearning_big_data


#qwen #ml #ai #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
105👍40🔥24🤔7
🚀 Qwen3-Coder — новая мощная open-source модель от Alibaba для кодинга

Модель с архитектурой MoE:
- 480B параметров в общей сложности
- 35B активных параметров
- Контекст 256k, но легко масштабируется до 1M токенов

📈 Производительность:
- На уровне Claude 4 Sonnet
- Лучше или на уровне GPT-4.1 на многих задачах
- Обходит Kimi K2, DeepSeek V3 на ряде бенчмарков

🧩 Модель уже доступна:
- На HuggingFace — можно скачать и запускать
- В OpenRouter — $1/M токенов вход, $5/M выход
(в 3 раза дешевле Claude Sonnet: $3 и $15)

💬 Попробовать бесплатно можно:
- Через чат: ttps://chat.qwen.ai/)
- GitHub link: https://github.com/QwenLM/qwen-code

Qwen3-Coder — это просто одна из лучших моделей для программирования, которые мы когда-либо видели.

#qwen #ml #ai #llm #Alibaba

@data_analysis_ml
👍85🔥2217👨‍💻2