По прошлому посту про реактивную горелку один из подписчиков задал очень хороший вопрос:
Зачем собирать такую гарелку-обогреватель, если можно просто сжечь бензин в тарелке и тепла будет столько же.
Действительно ли это так? Один из подвохов здесь заключается в том, что важно не количество тепла, а качество процесса и топлива.
▪️1. Тип топлива и его стоимость (Главный аргумент)
➖ «Просто сжечь бензин»: Вы используете дорогое, высокоочищенное топливо. Это как топить камин долларовыми купюрами — да, тепло будет, но экономически невыгодно.
➖Горелка с эжекцией: Она идеально подходит для сжигания дешевых, низкокачественных и часто бесплатных видов топлива:
— Отработанное моторное масло (отработка). Его просто выбрасывают или дорого утилизируют. Для такой горелки — это идеальное и бесплатное топливо.
— Солярка (дизельное топливо). Дешевле бензина.
— Мазут.
— Растительные масла.
Эта горелка — не про бензин, а про утилизацию отходов и экономию. Вы получаете тепло практически даром.
▪️2. Качество сгорания и безопасность
➖«Просто сжечь бензин»: Вы плеснули бензин в миску и поднесли спичку. Что получится?
Горит открытое горючее тело — чудовищная пожароопасность. Любая искра, перевернутая емкость — и пожар.
Копоть и вредные выбросы. Бензин сгорает неполностью, выделяя сажу и токсичные вещества (угарный газ). Вы будете этим дышать.
➖Горелка с эжекцией:
Топливо предварительно испаряется/распыляется. Проходя по раскаленной трубке, жидкое топливо превращается в пар или мелкодисперсную взвесь. Это смешивается с воздухом и сгорает гораздо полнее.
Пламя стабилизировано. Оно горит на выходе из сопла, а не на поверхности открытой жидкости. Это стабильный, управляемый факел.
Выше температура и КПД. Из-за лучшего смесеобразования КПД такого сжигания (хоть и неидеальный) все равно выше, чем у открытой лужи. (т.е. и расход топлива меньше)
Эта конструкция безопаснее (относительно, конечно) и экологичнее, так как обеспечивает более полное сгорание.
▪️3. Автоматизация и стабильность
«Просто сжечь бензин»: Это одноразовый процесс. Сгорело — и все. Чтобы греть постоянно, нужно постоянно подливать топливо, что неудобно и опасно.
Горелка с эжекцией: Это саморегулирующаяся система. Пламя само подсасывает ровно столько топлива, сколько может испарить и сжечь. Вы залили бак — и она работает стабильно долгое время без вашего участия.
Тепла действительно будет примерно одинаково. Но эта горелка создана для другого:
1. Экономия: Она превращает бесплатные или очень дешевые отходы (отработка) в полезное тепло. Сравнивать нужно не с бензином, а со стоимостью дров, угля или электричества.
2. Эффективность и безопасность: Она сжигает это "грязное" топливо гораздо лучше и безопаснее, чем примитивное открытое горение.
3. Удобство: Это работоспособный, хоть и кустарный, нагревательный прибор, а не просто эксперимент. #задачи #physics #физика #опыты #термодинамика #эксперименты #горение
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24🔥5❤4🤔3❤🔥1🤯1🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
Компания Tokamak Energy совершила небольшой, но очень важный прорыв в визуализации термоядерных процессов. Они впервые опубликовали цветное высокоскоростное видео работы своего сферического токамака ST40.
▪️ 1. Невероятная детализация: Камера снимала с частотой 16 000 кадров в секунду. Это позволяет разглядеть мельчайшие нестабильности и поведение плазменного шнура — то, что глазом или обычной камерой просто не увидеть.
▪️ 2. Цвет имеет значение: В отличие от черно-белых снимков, цвет помогает лучше анализировать распределение температуры и примесей в плазме.
▪️ 3. Данные, а не просто картинка: Эти кадры — не для красоты. Они критически важны для проверки и настройки компьютерных моделей, которые предсказывают поведение плазмы.
По сути, ученые получили «рентгеновское зрение» для своего реактора. Каждый такой кадр приближает нас к моменту, когда термоядерная энергия станет чистым и неиссякаемым источником энергии для человечества.
Watch one of our latest plasma pulses in our ST40 tokamak, filmed using a high-speed colour camera at an incredible 16,000 frames per second. Each pulse lasts around a fifth of a second. What you’re seeing is mostly visible light from the plasma’s edge, glowing pink. The core is simply too hot to emit visible light. In this footage, lithium is dropped into the plasma in the top right of the footage. As it interacts, it glows red when excited, then turns green as it becomes ionised, losing an electron. From there, it traces the magnetic field lines, revealing the plasma’s path around the tokamak. Lithium is the focus of our $52 million ST40 upgrade programme, in partnership with U.S. Department of Energy and the UK Department for Energy Security and Net Zero. This builds on pioneering work by Princeton Plasma Physics Laboratory and others that shows lithium can significantly improve plasma performance.
This video comes from ongoing research into X-point radiator (XPR) regimes, a promising operating mode for future fusion power plants that aims to cool the plasma before it reaches plasma-facing components (PFCs), helping to reduce wear without compromising performance. #физика #ядерная_физика #атомная_физика #электродинамика #магнетизм #плазма #physics #science #наука #квантовая_физика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥36❤16👍6⚡2🤔2😍1