Physics.Math.Code
143K subscribers
5.21K photos
2.1K videos
5.81K files
4.47K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🥺 Лопасти винта складываются для кардинального снижения гидродинамического сопротивления, когда двигатель не работает, а судно движется за счет другой силы (например, парусов) или просто дрейфует.

Что такое гидродинамическое сопротивление? Это сила, которая противодействует движению тела в воде. Оно складывается из нескольких компонентов, но в нашем случае ключевую роль играют два:
▪️Сопротивление трения: Связано с вязкостью воды. Чем больше смоченная поверхность тела, тем выше сопротивление.
▪️Сопротивление формы (или давление): Связано с разницей давлений на носовой и кормовой частях тела. "Лобовые" элементы, создающие турбулентность и разрежение за собой, сильно увеличивают это сопротивление.

Неподвижный винт с жестко закрепленными лопастями — это идеальный генератор сопротивления формы. Представьте себе лопасть винта:
▪️Она имеет сложный аэродинамический профиль, оптимизированный для работы в режиме тяги (когда вращается и "ввинчивается" в воду).
▪️Когда судно движется, а винт неподвижен, поток воды набегает на лопасть под отрицательным углом атаки (фактически, с "обратной", нерабочей стороны).
▪️В таком режиме профиль лопасти работает крайне неэффективно: за лопастью образуется мощная зона турбулентности и кавитации (разрывов потока), что создает очень высокое сопротивление давления.

Аналогия: Попробуйте протащить по воде обычную ложку выпуклой стороной вперед. А потом — ребром. Разница в сопротивлении будет колоссальной. Неподвижный винт — это и есть несколько таких "ложек", создающих огромный тормозящий эффект. Для парусной яхты это означает потерю скорости до 0.5-1 узла, что очень много в условиях слабого ветра.

В сложенном положении лопасти поворачиваются вокруг своих осей и складываются вдоль линии потока воды, параллельно валу или в специальные выемки в ступице. Что это дает с точки зрения гидродинамики:

1. Резкое снижение сопротивления формы: Вместо объемных, необтекаемых лопастей, поток воды обтекает компактную, обтекаемую ступицу и сложенные лопасти. Зона турбулентности и разрежения за ними минимальна.

2. Уменьшение смоченной поверхности: Сложенные лопасти представляют собой гораздо меньшую площадь, что снижает сопротивление трения.

В результате, сложенный винт создает сопротивление, сравнимое с сопротивлением простого стержня (вала), что позволяет судну развивать значительно большую скорость под парусами или экономить топливо на буксире. Обычно складывание/раскладывание происходит автоматически под действием двух сил:

1. Центробежная сила: При запуске двигателя и раскрутке вала центробежная сила стремится "выбросить" лопасти наружу, преодолевая усилие специальных пружин или грузов.

2. Гидродинамическая сила: Когда лопасти начинают захватывать воду, давление на их рабочую поверхность окончательно переводит их в рабочее, развернутое положение.

♻️ Существует также вариант V-образного (ферингтоновского) винта, у которого лопасти не складываются, а разворачиваются ребром к потоку, что дает схожий эффект снижения сопротивления. А для самых требовательных к скорости яхт используются съемные винты, которые убираются в специальный колодец в корпусе, полностью устраняя сопротивление. #гидростатика #гидродинамика #физика #physics #опыты #техника

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍79🔥34215❤‍🔥4🤯2🌚2🤨2🙈2😱1🆒1
💥 Первый лазер был изобретён американским физиком Теодором Майманом 16 мая 1960 года в исследовательской лаборатории Хьюза (Hughes Research Laboratories). Майман создал лазер вопреки мнению многих учёных, которые были уверены, что рубин не годится в качестве рабочей среды. 7 июля 1960 года на специально созванной пресс-конференции Майман объявил о создании лазера и рассказал о возможных областях его применения — связь, медицина, военная техника, транспорт, высокие технологии. Особенности конструкции:
▪️ В качестве активной среды — кристалл искусственного рубина ( оксид алюминия Al₂O₃ с небольшой примесью хрома Cr ).
▪️ Из кристалла был изготовлен стержень в виде цилиндра диаметром 1 и длиной 2 см, который в процессе работы подвергался облучению излучением импульсной газоразрядной лампы.
▪️ Резонатором служил резонатор Фабри-Перо, образованный серебряными зеркальными покрытиями, нанесёнными на торцы стержня.
▪️ Лазер работал в импульсном режиме, излучая свет с длиной волны 694,3 нм.
▪️ Майман предложил принцип накачки рабочего тела — короткими вспышками света от лампы-вспышки.
▪️ Зеркальные покрытия на торцах кристалла создавали положительную обратную связь, чтобы усилитель стал генератором.
▪️ Расчёты Маймана показали, что атомы хрома в кристалле рубина имеют подходящую систему энергетических уровней, которая делает возможной генерацию лазерного излучения.
▪️ Первый лазер Маймана стал отправной точкой для развития лазерных технологий. Лазеры стали незаменимыми инструментами в физике, химии, биологии и других научных дисциплинах, позволили учёным проводить более точные эксперименты и измерения.
▪️ Лазеры стимулировали дальнейшие исследования и инновации в области оптики и фотоники, привели к разработке новых типов лазеров, увеличению мощности и эффективности.

Импульсные лазеры мощнее непрерывных в плане мощности:
▫️Непрерывные лазеры характеризуются постоянной выходной мощностью, которая может достигать десятков киловатт. Это делает их идеальными для задач, требующих высокой мощности на протяжении длительного времени, таких как лазерная резка или сварка металлов.
▫️Импульсные лазеры работают иначе — они передают энергию в короткие, мощные вспышки. Это делает их менее энергоёмкими, поскольку импульсы могут достигать высокой пиковой мощности при минимальном общем энергопотреблении. Такой подход позволяет выполнять точные, деликатные работы, не перегревая материал.

Таким образом, для крупных производств, где необходима высокая мощность и стабильность, лучше подойдут непрерывные лазеры, а для точных задач, таких как микросварка, очистка поверхности или гравировка, рекомендуется использовать импульсные лазеры. #лазер #техника #science #физика #physics #производство

💥 Лазерная очистка поверхности старой монеты

💥 Лазерная резка

🔦 Лазерная сварка с разной формой луча

💥 Лазерное скальпирование микросхемы

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍5323🔥6❤‍🔥3🤔31🌚1