Physics.Math.Code
143K subscribers
5.2K photos
2.07K videos
5.81K files
4.46K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
😭 Наглядный пример того, что физика нужна в жизни

Перед вами эксперимент, который позволяет слить воду через более высокую границу, если выполнить некоторые условия — создать сифон (в данном случае объемный)

Сифон — это изогнутая трубка, используемая для переливания жидкости из одного сосуда в другой, когда эти сосуды находятся на разных уровнях. Ключевая особенность в том, что жидкость самостоятельно поднимается по колену трубки, а затем сливается вниз, в сосуд с более низким уровнем.

Представьте себе цепь, перекинутую через блок. Если с одной стороны блока свисает более длинный и тяжелый кусок цепи, он потянет за собой всю цепь, включая тот участок, который приходится подниматься вверх по другой стороне. С жидкостью в сифоне происходит нечто очень похожее. Здесь работают два ключевых физических закона:
Атмосферное давление.
Закон сообщающихся сосудов (и гравитация).

1. Предварительное заполнение. Сначала сифонную трубку нужно заполнить жидкостью (например, втянуть воздух ртом или с помощью насоса). Это важно, чтобы внутри не было воздуха, который бы "разорвал" столб жидкости. На видео это делается вращательными движениями — жидкость поднимается выше с помощью силы инерции при вращении.

2. Давление в точках A и B. Представим, что у нас есть два колена трубки:
Короткое колено опущено в верхний сосуд (точка A).
Длинное колено опущено в нижний сосуд (точка B).

На поверхность жидкости в обоих сосудах давит атмосферное давление (обозначим его Pₐтм). Оно примерно одинаково для обоих сосудов.

3. "Проталкивающая" сила. Жидкость — это цепь связанных молекул. Рассмотрим давление в самой высокой точке изгиба трубки (точка C).
Со стороны длинного колена (C→B) на точку C давит столб жидкости высотой h₂. Это давление P₂ = ρ * g * h₂ (где ρ — плотность жидкости, g — ускорение свободного падения). Оно направлено ВНИЗ, к точке B.
Со стороны короткого колена (C→A) на точку C давит столб жидкости высотой h₁. Это давление P₁ = ρ * g * h₁. Оно также направлено ВНИЗ, к точке A.

4. Ключевой момент: разница давлений. Поскольку h₂ > h₁, то P₂ > P₁. То есть, давление, "тянущее" жидкость вниз по длинному колену, сильнее, чем давление, "тянущее" ее вниз по короткому колену.

5. Результат. Эта разница давлений (P₂ - P₁) создает силу, которая проталкивает жидкость через самую высокую точку C и заставляет ее течь в сторону длинного колена, то есть в нижний сосуд. Атмосферное давление в верхнем сосуде постоянно подталкивает новую жидкость в короткое колено, чтобы компенсировать уходящую.

Схема: (Верхний сосуд) Уровень A —> (Точка C, самая высокая) —> (Нижний сосуд) Уровень B

⤴️⤵️ Почему она поднимается, если потом опускается? Жидкость поднимается на высоту h₁ не "сама по себе", а потому что ее туда толкает сила, создаваемая более тяжелым и длинным столбом жидкости h₂ в другой части трубки. Подъем — это лишь "необходимая жертва" на пути к общему снижению потенциальной энергии системы. Система стремится к состоянию с наименьшей энергией, и жидкость, перетекая из верхнего сосуда в нижний, как раз этого и достигает.

💩 Важные ограничения сифона:

▪️ Высота подъема (h₁) ограничена. Жидкость может подняться только до того уровня, где давление в самой высокой точке (C) не станет равно нулю (точнее, давлению насыщенных паров жидкости). На практике это означает, что h₁ не может превышать ~10 метров для воды при нормальном атмосферном давлении, так как столб воды высотой 10 метров создает давление, равное атмосферному. Если h₁ будет больше, столб жидкости разорвется.
▪️ Работает только с атмосферным давлением. В вакууме сифон работать не будет.
▪️ Уровень в верхнем сосуде должен быть выше уровня в нижнем. Иначе перетекания не будет.

Эффект сифона — это движение жидкости по трубке из сосуда с более высоким уровнем в сосуд с более низким уровнем, при котором жидкость на своем пути самостоятельно поднимается вверх выше уровня верхнего сосуда. #гидростатика #гидродинамика #физика #physics #опыты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥77👍3224🤯5❤‍🔥1🤩1😭1🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🥺 Лопасти винта складываются для кардинального снижения гидродинамического сопротивления, когда двигатель не работает, а судно движется за счет другой силы (например, парусов) или просто дрейфует.

Что такое гидродинамическое сопротивление? Это сила, которая противодействует движению тела в воде. Оно складывается из нескольких компонентов, но в нашем случае ключевую роль играют два:
▪️Сопротивление трения: Связано с вязкостью воды. Чем больше смоченная поверхность тела, тем выше сопротивление.
▪️Сопротивление формы (или давление): Связано с разницей давлений на носовой и кормовой частях тела. "Лобовые" элементы, создающие турбулентность и разрежение за собой, сильно увеличивают это сопротивление.

Неподвижный винт с жестко закрепленными лопастями — это идеальный генератор сопротивления формы. Представьте себе лопасть винта:
▪️Она имеет сложный аэродинамический профиль, оптимизированный для работы в режиме тяги (когда вращается и "ввинчивается" в воду).
▪️Когда судно движется, а винт неподвижен, поток воды набегает на лопасть под отрицательным углом атаки (фактически, с "обратной", нерабочей стороны).
▪️В таком режиме профиль лопасти работает крайне неэффективно: за лопастью образуется мощная зона турбулентности и кавитации (разрывов потока), что создает очень высокое сопротивление давления.

Аналогия: Попробуйте протащить по воде обычную ложку выпуклой стороной вперед. А потом — ребром. Разница в сопротивлении будет колоссальной. Неподвижный винт — это и есть несколько таких "ложек", создающих огромный тормозящий эффект. Для парусной яхты это означает потерю скорости до 0.5-1 узла, что очень много в условиях слабого ветра.

В сложенном положении лопасти поворачиваются вокруг своих осей и складываются вдоль линии потока воды, параллельно валу или в специальные выемки в ступице. Что это дает с точки зрения гидродинамики:

1. Резкое снижение сопротивления формы: Вместо объемных, необтекаемых лопастей, поток воды обтекает компактную, обтекаемую ступицу и сложенные лопасти. Зона турбулентности и разрежения за ними минимальна.

2. Уменьшение смоченной поверхности: Сложенные лопасти представляют собой гораздо меньшую площадь, что снижает сопротивление трения.

В результате, сложенный винт создает сопротивление, сравнимое с сопротивлением простого стержня (вала), что позволяет судну развивать значительно большую скорость под парусами или экономить топливо на буксире. Обычно складывание/раскладывание происходит автоматически под действием двух сил:

1. Центробежная сила: При запуске двигателя и раскрутке вала центробежная сила стремится "выбросить" лопасти наружу, преодолевая усилие специальных пружин или грузов.

2. Гидродинамическая сила: Когда лопасти начинают захватывать воду, давление на их рабочую поверхность окончательно переводит их в рабочее, развернутое положение.

♻️ Существует также вариант V-образного (ферингтоновского) винта, у которого лопасти не складываются, а разворачиваются ребром к потоку, что дает схожий эффект снижения сопротивления. А для самых требовательных к скорости яхт используются съемные винты, которые убираются в специальный колодец в корпусе, полностью устраняя сопротивление. #гидростатика #гидродинамика #физика #physics #опыты #техника

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍78🔥33174❤‍🔥3🤯2🌚2🤨2🙈2😱1🆒1