Physics.Math.Code
143K subscribers
5.2K photos
2.06K videos
5.81K files
4.45K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
N-угольники [1973] Бахман, Шмидт.zip
7.5 MB
📕 N-угольники [1973] Бахман, Шмидт

В этой книге на вполне элементарном материале, начинающемся с простейших геометрических истин (середины сторон произвольного четырехугольника являются вершинами параллелограмма и т. д.), развита весьма изящная теория, устанавливающая зачастую совершенно неожиданные связи между геометрией и важными концепциями и понятиями современной алгебры. Большое достоинство книги — сопровождающие изложение задачи, которые позволяют читателю все время контролировать степень овладения материалом.

Книга рассчитана на любителей математики самых разных категорий, начиная от старшеклассников, интересующихся этой наукой (например, учащихся школ с математической специализацией).

#математика #math #геометрия #графика #наука #дискретная_математика #графы #физика #physics

💡 Physics.Math.Code // @physics_lib
🔥24👍169❤‍🔥4
🔴🔵Задача «никакие три точки не лежат на одной прямой» — одна из задач комбинаторной геометрии, состоящая в нахождении количества точек, которые можно расположить на решётке n×n так, чтобы никакие три точки не находились на одной прямой.

Брасс, Мозер и Пах назвали задачу «одним из самых старых и интенсивно изучаемых геометрических вопросов, касающихся точек решётки»

#математика #math #геометрия #графика #наука #дискретная_математика #графы #задачи

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔4117👍12🔥4🤓21👾1
This media is not supported in your browser
VIEW IN TELEGRAM
#️⃣ Обычный поиск VS Квантовый поиск

В контексте квантовых вычислений квантовый поиск по графу — это квантовый алгоритм для поиска помеченного узла в графе. Концепция квантового блуждания основана на классических случайных блужданиях, в которых участник случайным образом перемещается по графу или решётке. В классическом случайном блуждании положение участника можно описать с помощью распределения вероятностей по различным узлам графа. В квантовом блуждании, с другой стороны, участник представлен квантовым состоянием, которое может находиться в суперпозиции нескольких местоположений одновременно.

Поисковые алгоритмы, основанные на квантовых прогулках, могут найти применение в различных областях, включая оптимизацию, машинное обучение, криптографию и сетевой анализ. Эффективность и вероятность успеха квантового поиска сильно зависят от структуры пространства поиска. В целом, алгоритмы квантового поиска обеспечивают асимптотическое квадратичное ускорение, аналогичное алгоритму Гровера. Одна из первых работ по применению квантового блуждания к задачам поиска была предложена Нилом Шенви, Джулией Кемпе и К. Биргиттой Уэйли. #математика #math #геометрия #графика #наука #алгоритмы #дискретная_математика #графы #задачи #программирование

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔7853👍36🔥30🤯5🤩1💯1
This media is not supported in your browser
VIEW IN TELEGRAM
🟢 Насколько сложно было бы запрограммировать физику такого процесса (смотри видео) без использования библиотек?

▪️Физика (Фундаментальные знания):

1. Классическая механика:
▫️Динамика твердого тела.
▫️Законы сохранения: Импульса, энергии (хотя часть энергии при разрушении переходит в деформацию и тепло), момента импульса.
▫️Теория удара: Коэффициент восстановления (COR), расчет импульсов сил при соударении. Учет углов столкновения.

2. Механика разрушения:
▫️Напряжения и деформации: Понятия растяжения, сжатия, сдвига, кручения. Тензоры напряжений.
▫️Критерии разрушения: Теории максимальных главных напряжений, максимальных касательных напряжений (Треска), энергии формоизменения (фон Мизеса). Что заставляет материал "ломаться"?
▫️Хрупкое vs. Пластичное разрушение: Как ведет себя материал (стекло vs. металл)? Трещинообразование, распространение трещин.
▫️Фрагментация: Как тело распадается на части? Зависит от материала, скорости удара, точек концентрации напряжений.

▪️Математика и Вычислительные методы:

1. Линейная алгебра: Векторы (позиция, скорость, сила), матрицы (вращение, трансформации), операции над ними. Абсолютно необходима.
2. Численные методы:
▫️Интегрирование уравнений движения: Методы Эйлера, Верле, Рунге-Кутты (для расчета позиций/скоростей тел и осколков на каждом шаге времени).
▫️Методы дискретизации:
— Метод конечных элементов (FEM): Разбиение объекта на мелкие элементы (тетраэдры, гексаэдры), расчет напряжений/деформаций в них. Точный, но очень ресурсоемкий для разрушения.
— Метод дискретных элементов (DEM): Представление объекта как совокупности множества мелких жестких частиц/гранул, связанных "связями". При превышении напряжения связи рвутся. Более подходит для хрупкого разрушения. Наиболее перспективен для "программирования с нуля" внутри DCC.
— Mesh-Free методы (напр., SPH): Моделирование материала без явной сетки. Сложны в реализации.
▫️Обнаружение столкновений (Collision Detection): Алгоритмы AABB, OBB, сфер, GJK, EPA. Определение что столкнулось и где.
▫️Реакция на столкновение (Collision Response): Расчет импульсов сил, изменяющих скорости тел/осколков после обнаружения контакта. Учет трения.

▪️ 3D Графика и Анимация:
▪️ Программирование и Скриптинг
▪️ Процесс разработки в Cinema 4D / 3ds Max "с нуля" (графическими примитивами)

⚠️ Сложности и Альтернативы:
▫️Вычислительная сложность: Симуляция тысяч взаимодействующих осколков в реальном времени невозможна на обычных ПК. Расчеты будут долгими.
▫️Реализм физики: Движки DCC (Bullet/PhysX) хороши для базовой динамики, но моделирование реалистичного разрушения материала (образование трещин, пластическая деформация) на уровне FEM им недоступно "из коробки". Скрипт на связях дает упрощенный, но визуально приемлемый результат.
▫️Houdini: Это отраслевой стандарт для сложных разрушений. Его процедурная природа и мощные солверы (Bullet, FEM, Vellum) идеально подходят для задач разрушения "с нуля". Гораздо эффективнее, чем скриптинг в C4D/Max, но требует изучения самого Houdini.
▫️Готовые плагины: Плагины вроде RayFire (3ds Max), NitroBlast/Thrausi (Cinema 4D), PulldownIt (C4D/Max) реализуют сложные алгоритмы разрушения (включая Voronoi) и управления связями через удобный интерфейс. Сильно экономят время по сравнению с чистым скриптингом, но менее "с нуля".

Создать реалистичную анимацию столкновения с разрушением "с нуля" на графических примитивах в C4D или 3ds Max – очень амбициозная и сложная задача, требующая глубоких знаний в физике, математике, программировании и 3D. Ключевые этапы: скриптинг генерации осколков (Voronoi), создание и управление "слабыми связями" между ними, реалистичная настройка материалов (особенно отражений) и освещения, пост-обработка. Будьте готовы к долгому процессу обучения, отладки и рендеринга. Для профессиональных результатов часто используют Houdini или специализированные плагины. Начните с малого (разрушение простого куба) и постепенно усложняйте. #программирование #моделирование #физика #графика #3D #разработка #разработка_игр #gamedev #gamedevelopment

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
177👍46🔥24🌚5🤩3❤‍🔥21🆒1