Physics.Math.Code
142K subscribers
5.19K photos
2.03K videos
5.81K files
4.43K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
☄️ Видманштеттеновы фигуры 🪐

Видманштеттенова структура — разновидность металлографической структуры сплавов, отличающаяся геометрически правильным расположением элементов структуры в виде пластин или игл внутри составляющих сплав кристаллических зёрен.

Присутствие Видманштеттеновой структуры является индикатором медленного охлаждения материала в космической среде, что позволяет идентифицировать метеориты среди других типов железа и сплавов.

Также термин «Видманштеттенова структура» применяется для характеристики структуры сильно перегретой или литой стали, в которой выделяющийся из аустенита избыточный феррит располагается вдоль октаэдрических плоскостей кристаллов аустенита. В настоящее время употребляется при описании других геометрически упорядоченных структур в сплавах.

#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science

💡 Physics.Math.Code // @physics_lib
👍56🔥2214🤯3
💫 В космосе жарко или холодно? 🚀

В космосе человечество сталкивается с экстремальными температурами — ледяным холодом и огненной жарой. Благодаря инновационным методам защиты и технологическому прогрессу, астронавты и космические аппараты смогли справиться с суровыми условиями. Разбираемся, какая температура в космосе и от чего она зависит.

Температура — это измерение скорости, с которой движутся частицы, а тепло — количество энергии, которой обладают частицы объекта. В космосе нет четкой температуры, так как нет воздуха, который мог бы передавать тепло.

Но космос не является полностью вакуумным. Хотя космическое пространство очень разреженное, там все равно присутствуют различные частицы и газы, которые влияют на окружающие объекты и процессы.

После Большого Взрыва около 13,8 млрд лет назад Вселенная была горячей и плотной, заполненной высокотемпературным газом и энергичными фотонами. С расширением Вселенной газ и фотоны также расширялись и охлаждались. Приблизительно через 380 000 лет произошла рекомбинация, когда электроны и протоны объединились, образуя стабильные атомы, что привело к освобождению пространства и прозрачности Вселенной для света.

Свободные фотоны, которые возникли в результате рекомбинации, постепенно остывали из-за расширения Вселенной. Результатом этого охлаждения стало реликтовое излучение, заполняющее весь космос в диапазоне микроволновых волн. Его температура составляет около −270,45°C.

В вакууме, где отсутствует воздух или другие частицы для передачи тепла путем проводимости и конвекции, тепло может передаваться только через излучение. Тепловое излучение — это электромагнитные волны, которые возникают в результате объединения элементарных частиц, таких как фотоны, электроны и протоны. Фотоны и другие элементарные частицы могут излучаться Солнцем и другими объектами космоса. Солнечные лучи содержат электромагнитные волны, включая инфракрасное, видимое и ультрафиолетовое излучение. Когда эти лучи попадают на поверхность объекта, они поглощаются, что приводит к нагреванию. Интенсивность нагрева зависит от свойств поверхности объекта и его положения относительно Солнца. Если всю энергию, что доходит от Солнца до Земли принять за 100%, то поверхностью поглощается 48%.

Международная космическая станция постоянно находится под воздействием солнечного света. Сторона, которая обращена к Солнцу, нагревается до 121 . Теневая сторона охлаждена до −157°C. Внутри МКС поддерживается комфортный температурный режим для астронавтов, примерно в диапазоне 20−25°C, благодаря системам отопления и охлаждения, которые регулируют условия внутри станции. Температура в открытом космосе может быть суровой для человека, несмотря на то, что вакуум космоса не способен отнимать тепло напрямую из-за отсутствия воздуха или других частиц для проводимости или конвекции, а тепловая потеря через контакт с окружающей средой минимальна. Космические скафандры и аппараты обладают теплоизоляцией, чтобы минимизировать потерю тепла. Они также имеют системы регулирования температуры, включающие обогрев и охлаждение. Чтобы справиться с экстремальной жарой или холодом, большинство космических скафандров изолированы слоями ткани (неопреном, гор-тексом, дакроном) и покрыты отражающими внешними слоями (майларом или белой тканью). #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science

Фильмы про космос:

🚀 Космонавтика и астрономия

☄️ Зачем нам Луна?

💥 Астрономия. Луна 1989 Центральное телевидение

🔵 Географическая оболочка [1976]

🌖 Луна — что это? [1973] Центральное телевидение

🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм

🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос

🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне

🫧 Фазы Луны

⚫️ Бессердечная гравитация [ Алексей Семихатов ]

🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

🪐 Вся правда об изучении Венеры зондами из СССР

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8428🔥16👏3🆒3🙈2👻1🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
🤔 Нейтронная звезда — космическое тело, являющееся одним из возможных результатов эволюции звёзд, состоящее в основном из нейтронной сердцевины, покрытой сравнительно тонкой (около 1 км) корой вещества в виде тяжёлых атомных ядер и электронов.

Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус нейтронной звезды составляет лишь 10—20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8⋅10¹⁷ кг/м3). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерного вещества, возникающее за счёт взаимодействия нейтронов.

Многие нейтронные звёзды обладают чрезвычайно высокой скоростью осевого вращения, — до нескольких сотен оборотов в секунду, и чрезвычайно сильным магнитным полем — до 10¹¹ Тл. По современным представлениям, нейтронные звёзды возникают в результате вспышек сверхновых звёзд. Любая звезда главной последовательности с начальной массой, более чем в 8 раз превышающей массу Солнца (M⊙), может в процессе эволюции превратиться в нейтронную звезду. По мере эволюции звезды в её недрах выгорает весь водород, и звезда сходит с главной последовательности. Некоторое время энерговыделение в звезде обеспечивается синтезом более тяжёлых ядер из ядер гелия, но этот синтез заканчивается после того, как все более лёгкие ядра превратятся в ядра с атомным номером, близким к атомному номеру железа — элементам с наибольшей энергией связи ядер. Когда все ядерное топливо в активной зоне израсходовано, активная зона поддерживается от гравитационного сжатия только давлением вырожденного электронного газа.

Нейтронные звёзды — один из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями. Впервые мысль о существовании звёзд с увеличенной плотностью ещё до открытия нейтрона, сделанного Чедвиком в начале февраля 1932 года, высказал известный советский учёный Лев Ландау. Так, в своей статье «О теории звёзд», написанной в феврале 1931 года, но по неизвестным причинам запоздало опубликованной только 29 февраля 1932 года — более чем через год, он пишет:
«Мы ожидаем, что всё это [нарушение законов квантовой механики] должно проявляться, когда плотность материи станет столь большой, что атомные ядра придут в тесный контакт, образовав одно гигантское ядро»

. #физика #механика #physics #science #астрономия #космос #наука #опыты #эксперименты #астрофизика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤‍🔥53👍49🔥1065🤯2
Media is too big
VIEW IN TELEGRAM
🌘 О радиации на Луне ☢️

Исследование, опубликованное в журнале Science, впервые рассчитывает, какой будет суточная доза радиации для астронавтов. Выяснилось, что они столкнутся с уровнем радиации почти в три раза выше, чем на МКС. Длительное воздействие излучения создает значительные риски для здоровья, включая катаракту, рак и заболевания центральной нервной системы. В связи с этим ученые предлагают строить базу под лунной поверхностью. Согласно планам НАСА, постоянная база на Луне должна появиться к 2030-м годам. Она позволит астронавтам проводить длительные экспедиции на южный полюс Луны.

Исследователи установили, что, если участники лунных миссий будут проводить на спутнике год или два, то они столкнутся с угрозой радиации. Однако, по их словам, база, защищенная достаточным количеством лунного грунта, должна стать безопасным убежищем. По подсчетам ученых, это должен быть слой толщиной около 76 см. При таких условиях уровень радиации будет примерно равен земному. Радиацию на поверхности Луны пытались измерить еще астронавты миссии «Аполлон», которые в 1960-х и 1970-х годах брали с собой дозиметры. Но приборы смогли показать только общее облучение, которому астронавты подвергались в течение всего времени пребывания в космосе, от взлета и до посадки. Однако команда Виммер-Швайнгрубера смогла задокументировать дневные уровни радиации на поверхности Луны, проанализировав данные, собранные китайским космическим кораблем «Чанъэ-4». Исследователи разделили общую дозу облучения на время, в течение которого инструмент собирал данные, чтобы рассчитать дневную общую дозу. Выяснилось, что на поверхности Луны человек будет подвергаться воздействию 1369 микрозивертов радиации в сутки (почти две земных недели), что примерно в 200 раз выше дневного уровня на Земле. Нужно отметить, что атмосфера Луны представляет собой крайне разреженную газовую оболочку, плотность которой в 10 трлн раз меньше по сравнению с земной. Атмосфера состоит из водорода, гелия, неона и аргона. Она практически не защищает Луну от воздействия радиации. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science

Фильмы про космос:

🚀 Космонавтика и астрономия

☄️ Зачем нам Луна?

💥 Астрономия. Луна 1989 Центральное телевидение

🔵 Географическая оболочка [1976]

🌖 Луна — что это? [1973] Центральное телевидение

🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм

🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос

🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне

🫧 Фазы Луны

⚫️ Бессердечная гравитация [ Алексей Семихатов ]

🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

🪐 Вся правда об изучении Венеры зондами из СССР

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍67🔥197🤨4😱31❤‍🔥1🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
🧊 Аэрогели — класс материалов, представляющих собой гель, в котором жидкая фаза полностью замещена газообразной. Такие материалы обладают рекордно низкой плотностью и демонстрируют ряд уникальных свойств: твёрдость, прозрачность, жаропрочность, чрезвычайно низкую теплопроводность и т. д. Распространены аэрогели на основе аморфного диоксида кремния, глинозёмов, а также оксидов хрома и олова. В начале 1990-х получены первые образцы аэрогеля на основе углерода.

Аэрогели относятся к классу мезопористых материалов, в которых полости занимают не менее 50 %, а как правило, 95—99,8 % объёма, а плотность составляет от 1 до 150 кг/м³. По структуре аэрогели представляют собой древовидную сеть из объединённых в кластеры наночастиц размером 2—5 нм и пор размерами до 100 нм.

На ощупь аэрогели напоминают легкую, но твёрдую пену, похожую на пенопласт. При сильной нагрузке аэрогель трескается, но в целом это весьма прочный материал — образец аэрогеля может выдержать нагрузку в 2000 раз больше собственного веса. Аэрогели, в особенности кварцевые, — хорошие теплоизоляторы. Они также очень гигроскопичны.

По внешнему виду кварцевые аэрогели полупрозрачны. За счёт рэлеевского рассеяния света на древовидных структурах они выглядят голубоватыми в отражённом свете и светло-жёлтыми в проходящем. Сходными оптическими свойствами обладают аэрогели на основе оксидов алюминия (Al₂O₃), циркония (ZrO₂) и титана (TiO₂). Аэрогели из других оксидов металлов могут иметь различный цвет и прозрачность; так, железооксидный аэрогель непрозрачен и имеет цвет, сходный со ржавчиной, ванадиевооксидный аэрогель непрозрачен, оливково-зелёного цвета; хромооксидный аэрогель имеет тёмно-зелёный или тёмно-синий цвет, а аэрогели на основе оксидов редкоземельных металлов прозрачны (оксид самария жёлтый, оксид неодима фиолетовый, оксиды гольмия и эрбия — розовые). Углеродные аэрогели имеют глубокий чёрный цвет, поглощая 99,7 % падающего света. Температура плавления кварцевого аэрогеля составляет 1200 °C.

⚡️ Углеродные аэрогели (аэрографиты) состоят из наночастиц, ковалентно связанных друг с другом. Они электропроводны и могут использоваться в качестве электродов в конденсаторах. За счёт очень большой площади внутренней поверхности (до 800 м²/грамм) углеродные аэрогели нашли применение в производстве суперконденсаторов (ионисторов) ёмкостью в тысячи фарад. В настоящее время достигнуты показатели в 104 Ф/грамм и 77 Ф/см³. Углеродные аэрогели отражают всего 0,3 % излучения в диапазоне длин волн от 250 до 14 300 нм, что делает их эффективными поглотителями солнечного света. Глинозёмные аэрогели из оксида алюминия с добавками других металлов используются в качестве катализаторов. На базе алюмооксидных аэрогелей с добавками гадолиния и тербия в НАСА был разработан детектор высокоскоростных соударений: в месте столкновения частицы с поверхностью происходит флюоресценция, интенсивность которой зависит от скорости соударения. #физика #physics #science #аэрогель #химия #наука #астрономия #астрофизика

💡 Physics.Math.Code // @physics_lib
👍72🔥2177❤‍🔥4
💥 Зоопарк нейтронных звезд [2008] [Россия] С. Б. Попов

Научно-популярная лекция о нейтронных звёздах: об истории их обнаружения, их видах, строении, способах изучения и т.п.
Сергей Борисович Попов — кандидат физико-математических наук, научный сотрудник Государственного Астрономического института имени Штернберга.
Специализируется в области астрофизики компактных объектов (нейтронных звезд, черных дыр).
Автор около ста научных и множества научно-популярных публикаций.

💥 Астрофизика - Нейтронные звезды Попов С. Б.

0:00:00 1. Массы белых карликов и нейтронных звезд
0:06:39 2. Экстремальные источники
0:08:32 3. Предсказание нейтронных звезд
0:13:04 4. Рождение нейтронных звезд. Рентгеновские источники
0:15:44 5. Ракетные эксперименты
0:17:39 6. Тесные двойные системы
0:21:39 7. Открытие нейтронных звезд. Пульсары
0:32:14 8. Оценка параметров нейтронных звезд
0:41:00 9. Новый зоопарк нейтронных звезд. Магнитары
0:47:22 10. Центральные компактные объекты в остатках сверхновых
0:52:19 11. Чем важны нейтронные звезды
0:54:54 12. Внутреннее строение нейтронных звезд
1:08:35 13. Измерение массы
1:16:48 14. Кварковые звезды
1:20:29 15. Остывание нейтронных звезд. Кинематический возраст
#физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍34❤‍🔥12🔥72🥰2😱2🗿2
📚 Подборка книг по Астрономии, Астрофизике, Космосу

💾 Скачать книги

Астрофизика — раздел астрономии, использующий принципы физики и химии, который изучает физические процессы в астрономических объектах, таких как звёзды, галактики, экзопланеты и т. д. Физические свойства материи в самых больших масштабах и возникновение Вселенной изучает космология.

Астрофизика — учение о строении небесных тел. Астрофизика занимается изучением физических свойств и (наряду с космохимией) химического состава Солнца, планет, комет или звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую принято называть астрохимией или химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Само название астрофизики существует с 1865 года и предложено Цёлльнером. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science #подборка_книг

☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047 (СБП) Сбер: +79026552832 (СБП) ЮMoney: 410012169999048

💡 Physics.Math.Code // @physics_lib
🔥38👍24101🤩1
🌘 Какой цвет Луны?

На снимке астрофотографа Рами Аммоуна мы можем рассмотреть и серо-коричневую гамму Орбитра и желтоватый блеск созданный атмосферой для объекта в зените и голубые, бордовые и даже желто-зеленые участки. И все-таки она цветная! Настоящие ли это цвета? Цветовая насыщенность снимка немного увеличена, но геология Луны подсказывает, что это не «выдумка» камеры. Более светлые поверхности - это лунные нагорья, которые называют материками, в то время как более темные области называют морями, несмотря на отсутствие жидкой воды. Материки бедны железом и богаты кальцием (вот откуда белый цвет), поэтому они светлее. Доминирующая порода в лунном нагорье называется анортозитом. Лунные моря состоят из базальтов - темных вулканических пород, которые образуются в результате быстрого охлаждения лавы, богатой магнием и железом. Получается, лунные моря когда-то были морями из лавы. Но базальты не всегда черные. Иногда они содержат оливин, который, как нетрудно догадаться, придает некоторым участкам Луны едва заметный оливковый оттенок. Так же серый реголит может иметь красные оттенки из-за оксида железа, а синие из-за содержания титана. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science

Фильмы про космос:

🚀 Космонавтика и астрономия

☄️ Зачем нам Луна?

💥 Астрономия. Луна 1989 Центральное телевидение

🔵 Географическая оболочка [1976]

🌖 Луна — что это? [1973] Центральное телевидение

🌔 Лунная трасса (Луна-20) [1972] ЦентрНаучФильм

🌚 Жили-были первооткрыватели - 25 серия. Армстронг, Луна и космос

🌘Ученые против мифов. Владимир Сурдин — Американцы были на Луне

🫧 Фазы Луны

⚫️ Бессердечная гравитация [ Алексей Семихатов ]

🌘 Базз Олдрин во время полёта "Аполлона-11" видел нечто

🖥 Против теории относительности и Эйнштейна // Алексей Семихатов, Владимир Сурдин / Вселенная Плюс

🪐 Вся правда об изучении Венеры зондами из СССР

📷 Снимок сделан 3 апреля 2025 года это изображение раскрывает настоящие цвета нашей Луны.

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍60🔥2211🙈21😍1
📚 Гравитация [3 тома] Мизнер Ч., Торн К., Уилер Дж

💾 Скачать книги

Монография выдающихся американских физиков посвящена изложению физических основ, современного математического аппарата и важнейших достижений теории тяготения Эйнштейна. Также один из авторов работал над фильмом "Интерстеллар".
Рекомендуем всем! Поделись с другом-инженером хорошими книгами.
Издатель: У. Х. Фримен. Издательство Принстонского университета.

Книга по-прежнему пользуется авторитетом в физическом сообществе и получает в основном положительные отзывы, но некоторые критикуют её за объём и стиль изложения.
«Гравитация» — настолько выдающаяся книга по теории относительности, что инициалы её авторов — М. Т. В. — могут использоваться в других книгах по теории относительности без каких-либо пояснений.

Спустя более тридцати лет после публикации «Гравитация» по-прежнему остаётся наиболее полным трактатом по общей теории относительности. На его 1300 страницах можно найти авторитетное и исчерпывающее обсуждение практически любой темы, связанной с этой областью. В книге также содержится обширная библиография со ссылками на первоисточники. Написанная тремя выдающимися учёными XX века, она задала тон многим последующим текстам по этой теме, в том числе и этому. — Джеймс Хартл

Книга, которая стала источником знаний как минимум для двух поколений исследователей в области гравитационной физики. Эта всеобъемлющая и энциклопедическая книга написана своеобразным языком, который вам либо понравится, либо нет. — Шон М. Кэрролл

#гравитация #физика #механика #наука #science #physics #космология #астрономия

💡 Physics.Math.Code // @physics_lib
100🔥42👍1310🤯3🤩2❤‍🔥1😍1🆒1
Гравитация_3_тома_Мизнер_Ч_,_Торн_К_,_Уилер_Дж.zip
25.1 MB
📚 Гравитация [3 тома] Мизнер Ч., Торн К., Уилер Дж

«Гравитация» — учебник по общей теории относительности Альберта Эйнштейна, написанный Чарльзом У. Мизнером, Кипом С. Торном и Джоном Арчибальдом Уилером. Первоначально он был опубликован издательством W. H. Freeman and Company в 1973 году и переиздан издательством Princeton University Press в 2017 году. Его часто сокращённо называют MTW (по фамилиям авторов). Несмотря на то, что этот учебник нельзя назвать лучшим вводным пособием, поскольку его объём может ошеломить новичка, и несмотря на то, что некоторые его части уже устарели, по состоянию на 1998 год он оставался ценным источником информации для аспирантов и исследователей.

После краткого обзора специальной теории относительности и плоского пространства-времени мы переходим к физике искривлённого пространства-времени и рассматриваем многие аспекты общей теории относительности, в частности уравнения поля Эйнштейна и их следствия, экспериментальные подтверждения и альтернативы общей теории относительности. В книгу включены исторические фрагменты, в которых кратко изложены идеи, приведшие к созданию теории Эйнштейна. В заключение автор задаётся вопросом о природе пространства-времени и предлагает возможные направления исследований. Несмотря на подробное изложение линеаризованной гравитации, одна тема осталась за рамками — гравитоэлектромагнетизм. Упоминается квантовая механика, но квантовая теория поля в искривлённом пространстве-времени и квантовая гравитация не рассматриваются.

Рассматриваемые темы в целом разделены на два «направления»: первое содержит основные темы, а второе — более сложные. Первое направление можно изучать независимо от второго. Основной текст дополнен блоками с дополнительной информацией, которые можно пропустить без потери целостности восприятия. Для комментирования основного текста также используются примечания на полях.

Математика, в первую очередь тензорное исчисление и дифференциальные формы в искривлённом пространстве-времени, рассматривается по мере необходимости. Ближе к концу книги также приводится вводная глава о спинорах. В книге есть множество иллюстраций сложных математических идей, таких как альтернативные полилинейные формы, параллельный перенос и ориентация гиперкуба в пространстве-времени. Для практики читателю предлагаются математические упражнения и физические задачи. #гравитация #физика #механика #наука #science #physics #космология #астрономия

💡 Physics.Math.Code // @physics_lib
🔥5626👍21🤩3👻1🗿1🆒1
Media is too big
VIEW IN TELEGRAM
⚛️ Физика в половине десятого [1971]

В игровой манере научно-популярный фильм рассказывает о квантовой физике. В доме отдыха, во время перерыва в трансляции хоккейного матча зрители рассуждают об устройстве атома.
Некоторые особенности сюжета:
▪️ Физик пытается объяснить режиссёру, что наглядно изображать явления в физике нереально, так как реальность будет искажена.
▪️ Отдыхающий утверждает, что если из сложного сделать простое, то можно ввести народ в заблуждение.
#ОТО #физика #механика #наука #science #physics #космология #астрономия #кванитовая_физика #квантовая_механика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
48🔥22👍11❤‍🔥2🤩21
⚫️ Первая в истории «фотография» черной дыры. За 40 лет до Event Horizon Telescope 🔭

Все помнят историческое изображение тени черной дыры в галактике M87, опубликованное коллаборацией Event Horizon Telescope в 2019 году. Но знаете ли вы, что первую в мире визуализацию черной дыры создали еще в 1979 году? И это была не фотография, а результат гениальных расчетов на компьютере с памятью меньше, чем у ваших умных часов!

👨🏻‍💻 Главный герой: Жан-Пьер Люминэ — молодой и талантливый французский астрофизик. В то время черные дыры были всего лишь теоретическим объектом, решениями уравнений Эйнштейна. Никто не знал, как они должны выглядеть. Люминэ задался этим вопросом.

💻 Инструмент: IBM 7040

Этот мэйнфрейм 1960-х годов был далек от сегодняшних ПК:

▪️Память: всего 32 КБ (да, килобайта!).

▪️Носители: данные загружались с перфокарт.

▪️ Графика: результаты расчета распечатывались на листе бумаги в виде символов и цифр, где каждый символ соответствовал определенному уровню яркости. Это была настоящая ASCII-графика!

🌌 Что же «увидел» Люминэ?

Он не пытался сфотографировать черную дыру. Вместо этого он создал первую в мире физически точную компьютерную симуляцию того, как черная дыра искажает свет вокруг себя.

Его модель учитывала ключевые эффекты Общей теории относительности:

1. Гравитационное линзирование: Сильная гравитация черной дыры искривляет лучи света от аккреционного диска (раскаленного диска из падающего на нее вещества).

2. Релятивистское доплеровское усиление: Часть диска, которая движется в нашу сторону, кажется ярче из-за огромной скорости.

Результат: На распечатке появилось изображение асимметричного кольца света с одной значительно более яркой стороной. Эта яркая область — та самая часть диска, что летит на нас. В центре кольца — темная область, «тень» черной дыры.

Почему это было революционно?

▪️Это было предсказание: Люминэ показал, как черная дыра должна выглядеть при наблюдении.

▪️Он создал икону: Именно его изображение стало прообразом всех последующих визуализаций черных дыр вплоть до снимка 2019 года.

▪️Связь теории и практики: Работа доказала, что даже с скромными вычислительными мощностями можно моделировать самые экстремальные объекты во Вселенной.

Снимок 2019 года — это триумфальное экспериментальное подтверждение теоретической работы, пионером которой был Жан-Пьер Люминэ и его старенький IBM 7040. Это прекрасный пример того, как научная мысль опережает технологии на десятилетия.

▫️Это изображение было симуляцией, а не прямым наблюдением.
▫️ Сам Люминэ с юмором отмечал, что его коллеги сначала приняли красивую картинку за «галстук-бабочку» или «велосипедное колесо».
▫️Эта история отлично показывает прогресс: от симуляции на основе теории к реальному снимку.

Что думаете? Знали о этой истории? 🤔 #физика #математика #астрономия #наука #квантовая_физика #science #physics #math

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥163👍4540❤‍🔥14🤩3👾2👏1🤔1🤝1🆒1
📚 Подборка книг по Астрономии, Астрофизике, Космосу

💾 Скачать книги

Астрофизика — раздел астрономии, использующий принципы физики и химии, который изучает физические процессы в астрономических объектах, таких как звёзды, галактики, экзопланеты и т. д. Физические свойства материи в самых больших масштабах и возникновение Вселенной изучает космология.

Астрофизика — учение о строении небесных тел. Астрофизика занимается изучением физических свойств и (наряду с космохимией) химического состава Солнца, планет, комет или звёзд и туманностей. Главные экспериментальные методы астрофизики: спектральный анализ, фотография и фотометрия вместе с обыкновенными астрономическими наблюдениями. Спектроскопический анализ составляет область, которую принято называть астрохимией или химией небесных тел, так как главные указания, даваемые спектроскопом, касаются химического состава изучаемых астрономических объектов. Фотометрические и фотографические исследования выделяются иногда в особые области астрофотографии и астрофотометрии. Само название астрофизики существует с 1865 года и предложено Цёлльнером. #физика #астрономия #оптика #космос #космология #cosmos #Astronomy #physics #science #подборка_книг

☕️ Для тех, кто захочет задонать на кофе:
ВТБ: +79616572047 (СБП)

💡 Physics.Math.Code // @physics_lib
👍2318🔥11😍6🤝21