📱 Revisiting BPR: A Replicability Study of a Common Recommender System Baseline
💾 Скачать исследование – ссылка
Ученые из лаборатории искусственного интеллекта T-Bank AI Research представили новый алгоритм, который с помощью ИИ увеличивает точность онлайн-рекомендаций до 50% в некоторых случаях. Разработчики взяли за основу и улучшили популярный алгоритм для предсказания предпочтений пользователей Bayesian Personalized Ranking, который считается одним из мировых стандартов в рекомендательных системах. Поиск наиболее эффективного варианта алгоритма занял более 200 000 GPU-часов и 15 000 экспериментов на внутренних данных Т-Банка с различными комбинациями параметров модели. Отмечается также, что новая разработка оказалась на 10% точнее алгоритма Mult-VAE, которую ранее опубликовали разработчиками из Netflix.
Новый алгоритм позволит компаниям улучшать свои метрики, в том числе конверсию в покупку, средний чек и выручку. Покупатели при этом смогут быстрее находить нужные товары на маркетплейсах, а зрители — получать более персонализированные рекомендации фильмов и сериалов.
Открытие ученых было признано мировым научным сообществом и представлено на главной международной конференции по рекомендательным системам ACM RecSys.
#ИИ #AI #искусственный_интеллект #science #алгоритмы
💡 Physics.Math.Code // @physics_lib
💾 Скачать исследование – ссылка
Ученые из лаборатории искусственного интеллекта T-Bank AI Research представили новый алгоритм, который с помощью ИИ увеличивает точность онлайн-рекомендаций до 50% в некоторых случаях. Разработчики взяли за основу и улучшили популярный алгоритм для предсказания предпочтений пользователей Bayesian Personalized Ranking, который считается одним из мировых стандартов в рекомендательных системах. Поиск наиболее эффективного варианта алгоритма занял более 200 000 GPU-часов и 15 000 экспериментов на внутренних данных Т-Банка с различными комбинациями параметров модели. Отмечается также, что новая разработка оказалась на 10% точнее алгоритма Mult-VAE, которую ранее опубликовали разработчиками из Netflix.
Новый алгоритм позволит компаниям улучшать свои метрики, в том числе конверсию в покупку, средний чек и выручку. Покупатели при этом смогут быстрее находить нужные товары на маркетплейсах, а зрители — получать более персонализированные рекомендации фильмов и сериалов.
Открытие ученых было признано мировым научным сообществом и представлено на главной международной конференции по рекомендательным системам ACM RecSys.
#ИИ #AI #искусственный_интеллект #science #алгоритмы
💡 Physics.Math.Code // @physics_lib
👍48🔥9❤5🗿4❤🔥3⚡3😘1
⛵️ Самый точный в мире метод распознавания неизвестных объектов на фото с помощью ИИ разработали ученые из T-Bank AI Research
💾 Скачать исследование
Ранее в области компьютерного зрения (CV) для распознавания объектов на фото применялись методы машинного обучения. Однако они сталкивались с проблемой однородности ансамблей, иначе говоря, они были слишком похожи друг на друга, что приводило к снижению качества и разнообразия их оценок.
Ученые из T-Bank AI Research разработали метод Saliency-Diversified Deep Ensembles, решающий эту проблему. В нем используются карты внимания, фокусирующиеся на разных аспектах данных. “Глубокие ансамбли”, которые объединяют несколько нейронных сетей для решения задачи применялись и ранее для компьютерного зрения, но при применении SDDE каждая модель обращается к разным аспектам данных, например отдельно захватывается фон изображения. Компиляция таких разных данных и привела к повышению точности анализа объектов на изображениях. Так ученым удалось уменьшить схожесть моделей, что способствует более надежной и диверсифицированной идентификации объектов.
Использование метода SDDE позволяет модели на 20% меньше ошибаться при обработке и анализе фото. При этом она учитывает не только наборы данных, знакомые ей из обучения, но и неизвестную ранее информацию. В перспективе метод SDDE будут использовать в сферах, требующих высокой точности анализа, например, в медицинской диагностике, где важно различать неопознанные элементы и графические артефакты, а также в сфере беспилотных транспортных средств.
Для проверки метода и оценки его эффективности ученые провели испытания на популярных базах данных: CIFAR10, CIFAR100 и ImageNet-1K. Результаты метода SDDE превзошли результаты других схожих алгоритмов, например, Negative Correlation Learning и Adaptive Diversity Promoting.
На Международной конференции по обработке изображений (IEEE ICIP) в Абу-Даби открытие ученых было признано мировым научным сообществом.
#ИИ #AI #искусственный_интеллект #science #алгоритмы #math #математика
💡 Physics.Math.Code // @physics_lib
💾 Скачать исследование
Ранее в области компьютерного зрения (CV) для распознавания объектов на фото применялись методы машинного обучения. Однако они сталкивались с проблемой однородности ансамблей, иначе говоря, они были слишком похожи друг на друга, что приводило к снижению качества и разнообразия их оценок.
Ученые из T-Bank AI Research разработали метод Saliency-Diversified Deep Ensembles, решающий эту проблему. В нем используются карты внимания, фокусирующиеся на разных аспектах данных. “Глубокие ансамбли”, которые объединяют несколько нейронных сетей для решения задачи применялись и ранее для компьютерного зрения, но при применении SDDE каждая модель обращается к разным аспектам данных, например отдельно захватывается фон изображения. Компиляция таких разных данных и привела к повышению точности анализа объектов на изображениях. Так ученым удалось уменьшить схожесть моделей, что способствует более надежной и диверсифицированной идентификации объектов.
Использование метода SDDE позволяет модели на 20% меньше ошибаться при обработке и анализе фото. При этом она учитывает не только наборы данных, знакомые ей из обучения, но и неизвестную ранее информацию. В перспективе метод SDDE будут использовать в сферах, требующих высокой точности анализа, например, в медицинской диагностике, где важно различать неопознанные элементы и графические артефакты, а также в сфере беспилотных транспортных средств.
Для проверки метода и оценки его эффективности ученые провели испытания на популярных базах данных: CIFAR10, CIFAR100 и ImageNet-1K. Результаты метода SDDE превзошли результаты других схожих алгоритмов, например, Negative Correlation Learning и Adaptive Diversity Promoting.
На Международной конференции по обработке изображений (IEEE ICIP) в Абу-Даби открытие ученых было признано мировым научным сообществом.
#ИИ #AI #искусственный_интеллект #science #алгоритмы #math #математика
💡 Physics.Math.Code // @physics_lib
👍98🔥26❤15❤🔥1🆒1
📗 Прикладное машинное обучение и искусственный интеллект для инженеров [2024] Джеф Просиз
📙 Applied Machine Learning and AI for Engineers Solve Business Problems That Can't Be Solved Algorithmically [2022] Jeff Prosise
💾 Скачать книги RU + EN
Сейчас такой литературы полно, но у этой книги есть ряд преимуществ:
▫️1) она написана с точки зрения прямого прикладного применения ML-моделей и при этом содержит в себе очень большой обзор и очень много полезных примеров
▫️2) книга написана увлекательно и очень понятным языком
▫️3) книга переведена на русский язык и перевод качественный
▫️4) здесь есть даже инструкции, как внедрять облачные сервисы с ИИ в свои собственные приложения по API, и много подобных практически полезных вещей
Книга состоит из двух частей:
▪️ ЧАСТЬ 1. МАШИННОЕ ОБУЧЕНИЕ С ПОМОЩЬЮ SCIКIT-LEARN
▪️ ЧАСТЬ 2. ГЛУБОКОЕ ОБУЧЕНИЕ С ПОМОЩЬЮ КERAS И TENSORFLOW
В каждой части по 7 глав, где рассмотрены основные модели и как ими пользоваться, как внедрять и применять, много примеров прикладных задач присутствует в каждой главе. #AI #ИИ #машинное_обучение #python #искусственный_интеллект #математика #computer_science
💡 Physics.Math.Code // @physics_lib
📙 Applied Machine Learning and AI for Engineers Solve Business Problems That Can't Be Solved Algorithmically [2022] Jeff Prosise
💾 Скачать книги RU + EN
Сейчас такой литературы полно, но у этой книги есть ряд преимуществ:
▫️1) она написана с точки зрения прямого прикладного применения ML-моделей и при этом содержит в себе очень большой обзор и очень много полезных примеров
▫️2) книга написана увлекательно и очень понятным языком
▫️3) книга переведена на русский язык и перевод качественный
▫️4) здесь есть даже инструкции, как внедрять облачные сервисы с ИИ в свои собственные приложения по API, и много подобных практически полезных вещей
Книга состоит из двух частей:
▪️ ЧАСТЬ 1. МАШИННОЕ ОБУЧЕНИЕ С ПОМОЩЬЮ SCIКIT-LEARN
▪️ ЧАСТЬ 2. ГЛУБОКОЕ ОБУЧЕНИЕ С ПОМОЩЬЮ КERAS И TENSORFLOW
В каждой части по 7 глав, где рассмотрены основные модели и как ими пользоваться, как внедрять и применять, много примеров прикладных задач присутствует в каждой главе. #AI #ИИ #машинное_обучение #python #искусственный_интеллект #математика #computer_science
💡 Physics.Math.Code // @physics_lib
👍32❤16🔥13❤🔥2👨💻2😍1🗿1
Прикладное_машинное_обучение_и_искусственный_интеллект_для_инженеров.zip
56.3 MB
📗 Прикладное машинное обучение и искусственный интеллект для инженеров [2024] Джеф Просиз
📙 Applied Machine Learning and AI for Engineers Solve Business Problems That Can't Be Solved Algorithmically [2022] Jeff Prosise
Книга рассказывает о применении искусственного интеллекта и машинного обучения в бизнесе и инженерной практике. Подробно описаны популярные алгоритмы машинного обучения и разъяснено, когда их целесообразно использовать. Приведены примеры построения моделей машинного обучения на языке Python с помощью библиотеки Scikit-Learn, а также создания нейронных сетей посредством библиотек Keras и TensorFlow. Изложены базовые принципы и способы оценки регрессионных моделей, моделей бинарной и многоклассовой классификации. Показаны примеры создания модели распознавания лиц и обнаружения объектов, языковых моделей, отвечающих на естественно-языковые вопросы и переводящих текст на другие языки. Рассмотрено использование набора облачных API Cognitive Services для внедрения ИИ в различные приложения. #AI #ИИ #машинное_обучение #python #искусственный_интеллект #математика #computer_science
💡 Physics.Math.Code // @physics_lib
📙 Applied Machine Learning and AI for Engineers Solve Business Problems That Can't Be Solved Algorithmically [2022] Jeff Prosise
Книга рассказывает о применении искусственного интеллекта и машинного обучения в бизнесе и инженерной практике. Подробно описаны популярные алгоритмы машинного обучения и разъяснено, когда их целесообразно использовать. Приведены примеры построения моделей машинного обучения на языке Python с помощью библиотеки Scikit-Learn, а также создания нейронных сетей посредством библиотек Keras и TensorFlow. Изложены базовые принципы и способы оценки регрессионных моделей, моделей бинарной и многоклассовой классификации. Показаны примеры создания модели распознавания лиц и обнаружения объектов, языковых моделей, отвечающих на естественно-языковые вопросы и переводящих текст на другие языки. Рассмотрено использование набора облачных API Cognitive Services для внедрения ИИ в различные приложения. #AI #ИИ #машинное_обучение #python #искусственный_интеллект #математика #computer_science
💡 Physics.Math.Code // @physics_lib
👍42🔥18❤11⚡6💯4🥰2🗿1