📖 HÜTTE: Справочник для инженеров, техников и студентов
https://vk.com/wall-51126445_21579
═════════
#высшая_математика #электротехника
#двигатели #математика #физика #теплота #детали_машин #сопромат
https://vk.com/wall-51126445_21579
═════════
#высшая_математика #электротехника
#двигатели #математика #физика #теплота #детали_машин #сопромат
👍3
Ядерный ракетный двигатель
════════════
https://vk.com/wall-51126445_24056
════════════
#научные_фильмы #физика #космос #двигатели #техника
════════════
https://vk.com/wall-51126445_24056
════════════
#научные_фильмы #физика #космос #двигатели #техника
👍2
Система смазки и охлаждения автомобильного двигателя
══════════════
https://vk.com/wall-51126445_24374
══════════════
#механика #техника #двигатели #научные_фильмы
══════════════
https://vk.com/wall-51126445_24374
══════════════
#механика #техника #двигатели #научные_фильмы
👍1
Система питания карбюраторных двигателей
══════════════
https://vk.com/wall-51126445_24400
══════════════
#двигатели #техника #научные_фильмы #машиностроение
══════════════
https://vk.com/wall-51126445_24400
══════════════
#двигатели #техника #научные_фильмы #машиностроение
👍1
Система питания бензиновых двигателей
══════════════
https://vk.com/wall-51126445_24402
══════════════
#двигатели #техника #научные_фильмы #машиностроение
══════════════
https://vk.com/wall-51126445_24402
══════════════
#двигатели #техника #научные_фильмы #машиностроение
👍1
📚 HÜTTE: Справочник для инженеров, техников и студентов
💾 Скачать книги
Изданием справочника HÜTTE преследуется цель дать книгу, которая содержала бы в ясном изложении не только формулы, таблицы и выводы из специальных курсов, необходимые при выполнении учебных работ по проектированию и расчету, но которая служила бы, главным образом, удобным и надежным справочником в практической деятельности инженеру.
Настоящее 15-е русское издание является переводом с 26-го немецкого издания, дополненное сведениями об отечественных стандартах и материалах. Многие разделы полностью написаны заново.
#высшая_математика #электротехника #двигатели #математика #физика #теплота #детали_машин #сопромат
💾 Скачать книги
Изданием справочника HÜTTE преследуется цель дать книгу, которая содержала бы в ясном изложении не только формулы, таблицы и выводы из специальных курсов, необходимые при выполнении учебных работ по проектированию и расчету, но которая служила бы, главным образом, удобным и надежным справочником в практической деятельности инженеру.
Настоящее 15-е русское издание является переводом с 26-го немецкого издания, дополненное сведениями об отечественных стандартах и материалах. Многие разделы полностью написаны заново.
#высшая_математика #электротехника #двигатели #математика #физика #теплота #детали_машин #сопромат
👍79🔥13❤🔥4❤1😁1
This media is not supported in your browser
VIEW IN TELEGRAM
#задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔46🙈22🔥14😱10👍9❤6🗿6🤯5🌚5⚡3👏3
Media is too big
VIEW IN TELEGRAM
😱 Физикам опять поставили шах и мат? Итак, перед вами perpetual motion machine with magnets: два шприца, на поршни приклеены неодимовые магниты, поршни шприцов прикреплены через проволочный коленчатый вал к ротору двигателя. Дают первоначальный импульс и поршни в шприцах начинают раскручивать генератор, к которому подключена лампочка и она светится. В чем подвох? Нарушает ли эта конструкция закон сохранения энергии?
Ключевая проблема: Как только магнит прошел точку максимального сближения и начинает удаляться, чтобы цикл повторился, вы должны снова преодолеть магнитное притяжение/отталкивание, но теперь уже в обратную сторону. То есть, та самая "магнитная пружина" теперь не толкает поршень, а мешает ему двигаться, и на преодоление этого сопротивления тратится энергия. Представьте шарик, который катится по волнистой поверхности. Скатившись с горки, он никогда не поднимется на следующую горку той же высоты из-за трения и потерь. Здесь то же самое.
Даже если бы с магнитами все было идеально (а это вообще так??), в системе есть множество источников потерь, на преодоление которых тратится энергия, вырабатываемая генератором:
1. Трение в механизмах: Трение в коленвале, в подшипниках ротора двигателя/генератора. Это главный "пожиратель" энергии.
2. Сопротивление воздуха: Движущиеся части (ротор, поршни) испытывают аэродинамическое сопротивление.
3. Трение поршней о стенки шприцов: Чтобы обеспечить герметичность, поршни плотно прилегают к стенкам, возникает значительная сила трения.
4. Магнитные потери: В генераторе при преобразовании механической энергии в электрическую происходят потери на нагревание обмоток, вихревые токи (токи Фуко) и т.д.
5. Нагрузка от лампочки: Сама лампочка, когда светится, — это и есть цель системы и главный потребитель энергии. Энергия, ушедшая на свет и нагрев лампочки, безвозвратно теряется системой.
Что происходит на самом деле? Вы даете первоначальный импульс (крутите пальцами коленвал). Вы сообщаете системе некоторый запас кинетической энергии. Магниты и правда помогают "подтолкнуть" поршни в нужный момент, делая движение более плавным и используя часть этой начальной энергии. Генератор начинает вырабатывать ток, и лампочка загорается. Но! Для вращения ротора генератора требуется приложить усилие (возникает тормозящий момент). Генератор не просто крутится — он "сопротивляется" вращению, потому что создает электричество. Энергия, запасенная вами при начальном толчке, очень быстро (за секунды или доли секунды) тратится. Но почему на видео всё работает? #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели
🔔 Оксфордский электрический звонок: самый долгий научный эксперимент в мире, длящийся с 1840 года
⚡️ Вечный электромагнитный двигатель
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Ключевая проблема: Как только магнит прошел точку максимального сближения и начинает удаляться, чтобы цикл повторился, вы должны снова преодолеть магнитное притяжение/отталкивание, но теперь уже в обратную сторону. То есть, та самая "магнитная пружина" теперь не толкает поршень, а мешает ему двигаться, и на преодоление этого сопротивления тратится энергия. Представьте шарик, который катится по волнистой поверхности. Скатившись с горки, он никогда не поднимется на следующую горку той же высоты из-за трения и потерь. Здесь то же самое.
Даже если бы с магнитами все было идеально (а это вообще так??), в системе есть множество источников потерь, на преодоление которых тратится энергия, вырабатываемая генератором:
1. Трение в механизмах: Трение в коленвале, в подшипниках ротора двигателя/генератора. Это главный "пожиратель" энергии.
2. Сопротивление воздуха: Движущиеся части (ротор, поршни) испытывают аэродинамическое сопротивление.
3. Трение поршней о стенки шприцов: Чтобы обеспечить герметичность, поршни плотно прилегают к стенкам, возникает значительная сила трения.
4. Магнитные потери: В генераторе при преобразовании механической энергии в электрическую происходят потери на нагревание обмоток, вихревые токи (токи Фуко) и т.д.
5. Нагрузка от лампочки: Сама лампочка, когда светится, — это и есть цель системы и главный потребитель энергии. Энергия, ушедшая на свет и нагрев лампочки, безвозвратно теряется системой.
Что происходит на самом деле? Вы даете первоначальный импульс (крутите пальцами коленвал). Вы сообщаете системе некоторый запас кинетической энергии. Магниты и правда помогают "подтолкнуть" поршни в нужный момент, делая движение более плавным и используя часть этой начальной энергии. Генератор начинает вырабатывать ток, и лампочка загорается. Но! Для вращения ротора генератора требуется приложить усилие (возникает тормозящий момент). Генератор не просто крутится — он "сопротивляется" вращению, потому что создает электричество. Энергия, запасенная вами при начальном толчке, очень быстро (за секунды или доли секунды) тратится. Но почему на видео всё работает? #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤53👍22🔥10🤯4🗿4⚡2🤔2😭1🤝1
Media is too big
VIEW IN TELEGRAM
В спорах о характеристиках двигателя часто сталкиваются два понятия: крутящий момент и мощность. Разберем их фундаментальные отличия без упрощений и мифов.
▪️1. Физическая сущность
➖ Крутящий момент (M, Н∙м) — это сила, умноженная на плечо рычага. В двигателе — это сила, с которой кривошипно-шатунный механизм проворачивает коленчатый вал.
Момент — это "рывковая" сила двигателя. Чем он выше, тем сильнее двигатель "тянет" на низких и средних оборотах.
➖ Мощность (N, л.с. или кВт) — это работа, совершаемая в единицу времени. Показывает, какой объем работы двигатель может выполнить за секунду.
Мощность — это "скорость" выполнения работы. Чем она выше, тем большую скорость может развить автомобиль.
▪️2. Математическая связь
Мощность — это производная от работы момента. Классическая формула:
N = M × ω = M × (2π × n) / 60 [Вт] = ( M × n × π ) / 30 000 [кВт] ≈ [ M (Н∙м) × n (об/мин) ] / 9549Если нужна мощность в лошадиных силах (л.с.), учитываем, что 1 кВт ≈ 1.3596 л.с.
N — мощность (кВт),
ω — угловая скорость (рад/с),
M — крутящий момент (Н∙м),
n — частота вращения коленвала (об/мин).
Мощность не существует без момента. Она является его функцией и напрямую зависит от того, какой момент двигатель развивает на конкретных оборотах.
▪️3. Что важнее на практике?
Некорректно противопоставлять эти величины. Они две стороны одной медали. Однако, для понимания поведения автомобиля:
➖ Высокий момент в широком диапазоне оборотов (полка момента) — определяет динамику разгона и эластичность двигателя. Автомобиль с высоким моментом на "низах" будет уверенно трогаться и обгонять без постоянных переключений передач. Крутящий момент — это сила, которая создает ускорение.
➖ Максимальная мощность — определяет потенциальную максимальную скорость автомобиля. Чтобы разогнаться до высоких скоростей, нужна способность совершать большую работу каждую секунду, то есть высокая мощность. Мощность — это результат применения этой силы с определенной частотой (оборотами).
В современных двигателях важен не пик момента или мощности, а их кривые и ширина рабочего диапазона. Идеал — ровная "полка" момента на низких и средних оборотах, которая обеспечивает высокую мощность на верхах. #техника #конструктор #механика #динамика #опыты #авто #двигатели
⚙️ Тест 9 типов подвесок [ЛегоТехникс]
⚙️ Редуктор из LEGO с огромным передаточным числом
⚙️ Моделирование решения задачи передвижения автомобилей по песчаному грунту с помощью конструктора LEGO
⛔️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать
⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!
🎻 Когда Lego играет на гитаре лучше, чем ты...
⚙️ Lego MindStorm
👾 Что будет, если надолго оставить инженера с конструктором Lego
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤58👍44🔥19❤🔥6🤨2🗿2⚡1
Media is too big
VIEW IN TELEGRAM
Вся магия вечных двигателей рушится на фундаментальном уравнении вращательного движения: J · ε = M , где
J — момент инерции маховика (его «нежелание» раскручиваться или инертность. Это аналог массы во втором законе Ньютона, из которого и выводится закон выше).
ε (эпсилон) — угловое ускорение (оно должно быть отлично от нуля, если двигатель раскручивается или оно может быть равным 0, если система вышла на постоянную скорость вращения).
M — суммарный момент сил, приложенных к системе.
Вот в чём подвох: в такой системе пружины создают силы, направленные в разные стороны. Когда одна пружина пытается раскрутить маховик по часовой стрелке, другая в этот же момент пытается крутить его против. Просто сделайте рисунок с торца такого двигателя. Получится, что алгебраическая сумма моментов всех сил (n сил для n пружин) равна нулю. Подставляем это в наше уравнение: J · ε = 0. Момент инерции J — величина не нулевая (маховик-то есть). Единственный способ выполнить это равенство — сделать угловое ускорение ε равным нулю. Вывод: система не может раскрутиться сама по себе.
Но в чем же подвох на видео? Всё довольно банально:
1. Скрытый источник энергии. Часто в кадр не попадает электромоторчик, спрятанный внутри вала или основания, который и раскручивает маховик.
2. Однократный запуск. Устройство раскручивают вручную, снимают фазу «последнего затухающего колебания», а потом видео зацикливают, создавая иллюзию непрерывного движения.
3. Хитрые ракурсы. Камера не показывает полный цикл работы всех пружин, чтобы зритель не увидел момент, когда они мешают, а не помогают движению.
Как бы вы не хотели изобрести вечный двигатель, вам стоит помнить, что закон сохранения (изменения) энергии работает всегда. Если есть диссипативные силы, то полная энергия системы убывает. И вы не сможете сделать вечный двигатель без пополнения энергией извне (но тогда это уже не вечный двигатель). #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели #вечныйдвигатель
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤30🔥9🤯3😱2
This media is not supported in your browser
VIEW IN TELEGRAM
Сегодня разберем один из самых необычных ДВС в истории — ротационный двигатель (ротатив). Не путать с роторным Ва́нкеля! Здесь цилиндры и картер вращаются вокруг неподвижного коленвала, а воздушный винт наглухо прикручен к картеру.
Пик славы — Первая мировая война. Легенды: «Сопвич Кэмел», «Фоккер Dr.I» Манфреда фон Рихтгофена, французский «Гном». Да, тот самый рычащий, гремящий мотор, который трясет всем самолетом в кино — это он и есть.
1. Охлаждение набегающим потоком — главная причина. Цилиндры мчатся в воздухе со скоростью винта, обеспечивая равномерное и эффективное воздушное охлаждение. Для рядного ДВС того времени это была огромная проблема — задние цилиндры перегревались, требовался тяжелый и сложный жидкостный радиатор.
2. Превосходное соотношение масса/мощность. Конструкция проще, компактнее. Минимум деталей, нет маховика (его роль выполняет массивный вращающийся блок цилиндров). Для хрупких деревянно-тряпичных самолетов — идеально.
3. Плавность работы. Вращающийся блок создавал мощный гироскопический эффект, что снижало вибрации (хотя и создавало другие особенности в пилотировании).
4. Не боялся низких температур. Бензин и масло подавались прямо в картер, не замерзали в длинных трубопроводах.
❌ А что же рядный двигатель? В начале XX века он был тяжелее, сложнее в охлаждении, менее надежен в воздушных условиях. Его время пришло позже, с развитием алюминиевых сплавов, эффективных радиаторов и нагнетателей.
⚠️ Минусы, которые убили ротатив:
1. Гироскопический момент. Огромный! Вращающаяся масса в сотни килограммов делала самолет очень устойчивым в одной плоскости, но крайне сложным в маневрировании в другой. Разворот налево и направо выполнялся с разной скоростью и усилием. Для новичков — смертельно опасно.
2. Чудовищный расход масла. Система смазки — прямой продувкой! Масло подавалось в картер вместе с топливом, сгорало и выбрасывалось в атмосферу. Расход — до 1 литра на бензин. Пилоты дышали парами касторового масла, которое, простите, давало известный «слабительный эффект».
3. Ограничение по мощности и размерам. С увеличением числа оборотов и диаметра блока ротационные силы разрушали конструкцию. Предел — около 200 л.с. и 1300 об/мин. Звездообразный двигатель с неподвижными цилиндрами и нагнетателем оказался мощнее.
4. Сложное управление. Не было дросселя в привычном виде! Мощность регулировали перекрыванием подачи топлива («контроль газа»), что вело к ненадежному зажиганию. Часто на посадке мотор просто выключали.
Ротативный двигатель — это гениальное инженерное решение для конкретных технологических и исторических условий. Он дал авиации мощный толчок, но стал тупиковой ветвью, уступив место более совершенным звездообразным и рядным моторам. А как думаете, есть ли у ротативной схемы шанс на реинкарнацию в современных беспилотниках или гибридных установках? #авиация #двигатели #инженерия #историятехники #ротативныйдвигател
Подборка очень интересных учебных видео о физике работе ДВС
🐝 «Nano Bee». Двигатель объемом 0,006 см³
Самый маленький четырехцилиндровый ДВС в мире
⚙️ Авиационный гироскоп
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍53❤33🔥27😱4🌚3🤔2🤩2
Media is too big
VIEW IN TELEGRAM
В условиях работы на крайнем севере костёр под машиной — частый случай. Цель — не прогреть всю машину, а ожидить загустевшие технические жидкости и разогреть металлические узлы до температур, при которых возможен запуск и работа.
▪️ 1. Моторное масло в картере двигателя (главная цель)
При температурах -30°C и ниже качественное всесезонное масло (5W-40) превращается в густой кисель или даже гель. При таком запуске масляный насос не может прокачать его по системе, двигатель первые секунды работает без смазки, что приводит к катастрофическому износу (задирам на вкладышах коленвала, распредвала, цилиндрах). Прогрев картера костром делает масло текучим и позволяет ему мгновенно попасть ко всем трущимся парам при запуске.
▪️2. Топливная система (особенно дизельные двигатели)
Дизельное топливо при сильных морозах парафинизируется (мутнеет, превращается в кашу). Фильтры и топливопроводы забиваются. Бензин тоже хуже испаряется, но проблема менее критична. Прогрев топливных фильтров, подводящих трубок и иногда самого топливного бака позволяет топливу снова стать текучим.
▪️3. Трансмиссионные масла (в КПП, мостах, раздаточной коробке)
Эти масла (особенно в механических КПП) еще гуще моторного. При попытке тронуться с места без прогрева можно порвать шестерни или срезать шлицы. Тягучее масло создает огромное сопротивление вращению, увеличивая нагрузку на стартер и двигатель.
▪️4. Аккумуляторная батарея (АКБ)
При -30°C эффективная емкость АКБ падает в 2 и более раза. Химические процессы в ней сильно замедляются. Она не может отдать ток, достаточный для прокрутки замерзшего мотора. Прогрев поддона (а косвенно и АКБ) увеличивает ее отдачу.
Что прогревают прежде всего? — Картер двигателя (поддон) и область вокруг топливного фильтра. Иногда направляют тепло и на КПП. Возникает вопрос: насколько опасно разогревание техники огнем? Крайне опасно, если делать это без опыта и соблюдения строгих правил. Это метод "на грани", к которому прибегают, когда другие способы (отапливаемый гараж, предпусковой подогреватель, электронный прогрев) недоступны.
Что может пойти не так?
1. Возгорание промасленной грязи и опилок на раме. Плавление и возгорание пластиковых и резиновых элементов (проводка, патрубки, шланги, сальники, антибрызговые щитки). Утечка топлива или масла из-за нагрева может привести к вспышке.
2. Перегрев и потеря прочности: Локальный нагрев ответственных металлических деталей (рычагов подвески, элементов рамы) может привести к изменению их структуры (отпуск металла) и потере прочности. Особенно опасен резкий перепад температур. Разрушение резиновых уплотнителей (сальников, сайлентблоков), что позже приведет к течам.
3. Прямая угроза взрыва — прогрев газового баллона (если машина на газовой установке). Пары бензина или скопившийся в выхлопной системе конденсат при резком нагреве могут воспламениться.
Прогрев техники открытым огнем — это архаичный, рискованный, но иногда единственно возможный в полевых условиях метод, к которому прибегают опытные механизаторы и водители. Он спасает технику от еще большего разрушения при "холодном запуске". #механика #двигатели #инженерия #физика #огонь
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍39🔥21❤17🤯3😱2