Media is too big
VIEW IN TELEGRAM
Принцип работы основан на импульсном повышающем преобразователе . Можно использовать катушку индуктивности (повышающий трансформатор) для создания высоковольтного импульса, который пробивает воздушный зазор. Схема генерирует импульсы высокого напряжения (тысячи вольт), достаточные для создания болезненного удара током.
⚠️ Никогда не замыкайте выходные электроды напрямую. Это мгновенно выведет компоненты из строя. Используемая батарейка AAAA имеет небольшую емкость, но при коротком замыкании может сильно нагреться. Дуга имеет очень высокую температуру. Не прикасайтесь к ней и не направляйте на легковоспламеняющиеся материалы. Держите зажигалку так, чтобы дуга не касалась металлических частей плиты, чтобы избежать короткого замыкания.
По сути у нас схема блокинг-генератора на одном транзисторе. Это классическая и очень эффективная схема для таких задач. Опишем примерный принцип работы:
1. Ток от батареи течет через первичную обмотку катушки, открывая транзистор.
2. Магнитное поле в катушке накапливает энергию.
3. В определенный момент ток перестает расти, и поле начинает схлопываться.
4. Это схлопывание создает во вторичной (высоковольтной) обмотке короткий импульс высокого напряжения, который и создает дугу.
Необходимые компоненты:
1. Источник питания: 1 батарейка AAAA (3.7V)
2. Транзистор: NPN, желательно мощный и высоковольтный. Идеально подойдут: 2N3055 , MJE13007 , BD139, КТ815.
3. Резистор: 1 кОм (R1), мощностью 0.25 - 0.5 Вт.
4. Катушка индуктивности (сердечник): Лучше всего подойдет ферритовый стержень от старого радиоприемника. Можно разобрать ненужный импульсный трансформатор или дроссель.
5. Обмоточный провод:
— Первичная обмотка (толстая): Медный эмалированный провод диаметром 0.5 - 0.8 мм. Длина ~1 метр.
— Вторичная обмотка (тонкая): Медный эмалированный провод диаметром 0.1 - 0.2 мм. Длина ~5-10 метров.
6. Электроды: Два оголенных провода или кусочки вольфрамового электрода (идеально, так как они не обгорают). Можно использовать толстые канцелярские скрепки.
7. Корпус и монтаж: Монтажная плата или кусок текстолита, провода, кнопка без фиксации (опционально, но желательно для экономии батареи), термоусадка/изолента.
#физика #схемотехника #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science
🔥 Свечение газов вблизи катушки Тесла
⚡️ Arduino в качестве управляющего элемента в большом станке — это возможно
💽 Самые массовые HDD Seagate ST-225
📕 Основы микроэлектроники [2001] Степаненко И.П.
📘 Практикум начинающего радиолюбителя [1984] (2-е изд., перераб. и доп.) Борисов В.Г.
⚡️ Ионофон
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍69🔥24❤17⚡6🆒1
🧲 Магнитная передача по своей геометрии и функциям напоминает традиционную механическую передачу, в которой вместо зубьев используются магниты. Когда два противоположных магнита приближаются друг к другу, они отталкиваются; если их разместить на двух кольцах, магниты будут действовать как зубья. В отличие от обычной жёсткой контактной обратной связи в цилиндрической передаче, где шестерня может свободно вращаться до тех пор, пока не вступит в контакт со следующей шестернёй, магнитная передача имеет упругую обратную связь. В результате магнитные передачи способны оказывать давление независимо от относительного угла. Несмотря на то, что они обеспечивают такое же передаточное число, как и традиционная зубчатая передача, такие шестерни работают без соприкосновения и не подвержены износу сопрягаемых поверхностей, не шумят и могут проскальзывать без повреждений.
🧲 Магнитная муфта (или магнитный редуктор) представляет собой устройство для передачи вращательного момента между соосными (и не соосными) валами без механического контакта. Основу работы устройства составляют силы магнитного взаимодействия. Роторы разделены герметичным немагнитным экраном (воздушный зазор или стенка из немагнитного материала), что обеспечивает возможность передачи момента через физическое препятствие.
▪️ Синхронная магнитная муфта: Если на обоих роторах установлены постоянные магниты, их магнитные поля стремятся к состоянию с минимальной энергией, что соответствует взаимной ориентации разноименных полюсов. При вращении ведущего ротора его магнитное поле, воздействуя на поле ведомого ротора, создает вращающий момент, вызывающий синхронное вращение. Момент передачи прямо пропорционален градиенту магнитной энергии в воздушном зазоре.
▪️ Асинхронная магнитная муфта (Индукционная): Если ведомый ротор выполнен из немагнитного материала с высокой электропроводностью (например, меди или алюминия), то вращающееся магнитное поле ведущего ротора индуцирует в нем вихревые токи (токи Фуко). Взаимодействие между магнитным полем ведущего ротора и этими индуцированными токами создает силу Лоренца, приводящую ведомый ротор во вращение. При этом возникает скольжение — ведомый ротор отстает по частоте вращения от ведущего, что является необходимым условием для возникновения вращающего момента.
⚙️ Магнитный редуктор является развитием принципа магнитной муфты. Он содержит, как минимум, три ротора с различным количеством пар полюсов (p). Отношение чисел пар полюсов на роторах определяет передаточное отношение по формуле, аналогичной для механических редукторов. Момент передается за счет гармонического взаимодействия магнитных полей, создаваемых магнитами роторов с разным шагом. Таким образом, работа магнитной муфты и редуктора основана на фундаментальных принципах магнитостатики и электромагнетизма: силовом взаимодействии постоянных магнитов или взаимодействии вращающегося магнитного поля с индуцированными в проводящей среде вихревыми токами. Отсутствие механического контакта обуславливает такие преимущества, как необслуживаемость, высокую надежность и абсолютную герметичность.
Редуктор с магнитной муфтой можно использовать в вакууме без смазки или при работе с герметичными барьерами. Это может быть преимуществом во взрывоопасных или других опасных средах, где утечки представляют реальную угрозу. Однако, стоит помнить, что при условиях, когда температура превышает точку Кюри, магнитные свойства теряются. Точка Кюри (или температура Кюри) — это критическая температура, выше которой ферромагнетик или ферримагнетик теряет свои спонтанные намагниченность и постоянные магнитные свойства, превращаясь в парамагнетик. Для наиболее распространенных марок неодимовых магнитов температура Кюри лежит в диапазоне от 310 °C до 400 °C. Потеря магнитных свойств при нагреве выше точки Кюри является необратимым процессом для стандартных магнитов. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
▪️ Синхронная магнитная муфта: Если на обоих роторах установлены постоянные магниты, их магнитные поля стремятся к состоянию с минимальной энергией, что соответствует взаимной ориентации разноименных полюсов. При вращении ведущего ротора его магнитное поле, воздействуя на поле ведомого ротора, создает вращающий момент, вызывающий синхронное вращение. Момент передачи прямо пропорционален градиенту магнитной энергии в воздушном зазоре.
▪️ Асинхронная магнитная муфта (Индукционная): Если ведомый ротор выполнен из немагнитного материала с высокой электропроводностью (например, меди или алюминия), то вращающееся магнитное поле ведущего ротора индуцирует в нем вихревые токи (токи Фуко). Взаимодействие между магнитным полем ведущего ротора и этими индуцированными токами создает силу Лоренца, приводящую ведомый ротор во вращение. При этом возникает скольжение — ведомый ротор отстает по частоте вращения от ведущего, что является необходимым условием для возникновения вращающего момента.
Редуктор с магнитной муфтой можно использовать в вакууме без смазки или при работе с герметичными барьерами. Это может быть преимуществом во взрывоопасных или других опасных средах, где утечки представляют реальную угрозу. Однако, стоит помнить, что при условиях, когда температура превышает точку Кюри, магнитные свойства теряются. Точка Кюри (или температура Кюри) — это критическая температура, выше которой ферромагнетик или ферримагнетик теряет свои спонтанные намагниченность и постоянные магнитные свойства, превращаясь в парамагнетик. Для наиболее распространенных марок неодимовых магнитов температура Кюри лежит в диапазоне от 310 °C до 400 °C. Потеря магнитных свойств при нагреве выше точки Кюри является необратимым процессом для стандартных магнитов. #видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥35❤24👍15🤝4⚡3🥰1🤨1😭1
This media is not supported in your browser
VIEW IN TELEGRAM
Компания Tokamak Energy совершила небольшой, но очень важный прорыв в визуализации термоядерных процессов. Они впервые опубликовали цветное высокоскоростное видео работы своего сферического токамака ST40.
▪️ 1. Невероятная детализация: Камера снимала с частотой 16 000 кадров в секунду. Это позволяет разглядеть мельчайшие нестабильности и поведение плазменного шнура — то, что глазом или обычной камерой просто не увидеть.
▪️ 2. Цвет имеет значение: В отличие от черно-белых снимков, цвет помогает лучше анализировать распределение температуры и примесей в плазме.
▪️ 3. Данные, а не просто картинка: Эти кадры — не для красоты. Они критически важны для проверки и настройки компьютерных моделей, которые предсказывают поведение плазмы.
По сути, ученые получили «рентгеновское зрение» для своего реактора. Каждый такой кадр приближает нас к моменту, когда термоядерная энергия станет чистым и неиссякаемым источником энергии для человечества.
Watch one of our latest plasma pulses in our ST40 tokamak, filmed using a high-speed colour camera at an incredible 16,000 frames per second. Each pulse lasts around a fifth of a second. What you’re seeing is mostly visible light from the plasma’s edge, glowing pink. The core is simply too hot to emit visible light. In this footage, lithium is dropped into the plasma in the top right of the footage. As it interacts, it glows red when excited, then turns green as it becomes ionised, losing an electron. From there, it traces the magnetic field lines, revealing the plasma’s path around the tokamak. Lithium is the focus of our $52 million ST40 upgrade programme, in partnership with U.S. Department of Energy and the UK Department for Energy Security and Net Zero. This builds on pioneering work by Princeton Plasma Physics Laboratory and others that shows lithium can significantly improve plasma performance.
This video comes from ongoing research into X-point radiator (XPR) regimes, a promising operating mode for future fusion power plants that aims to cool the plasma before it reaches plasma-facing components (PFCs), helping to reduce wear without compromising performance. #физика #ядерная_физика #атомная_физика #электродинамика #магнетизм #плазма #physics #science #наука #квантовая_физика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
2🔥91❤36👍16⚡8😍5🤔2🤯2❤🔥1
Media is too big
VIEW IN TELEGRAM
😱 Физикам опять поставили шах и мат? Итак, перед вами perpetual motion machine with magnets: два шприца, на поршни приклеены неодимовые магниты, поршни шприцов прикреплены через проволочный коленчатый вал к ротору двигателя. Дают первоначальный импульс и поршни в шприцах начинают раскручивать генератор, к которому подключена лампочка и она светится. В чем подвох? Нарушает ли эта конструкция закон сохранения энергии?
Ключевая проблема: Как только магнит прошел точку максимального сближения и начинает удаляться, чтобы цикл повторился, вы должны снова преодолеть магнитное притяжение/отталкивание, но теперь уже в обратную сторону. То есть, та самая "магнитная пружина" теперь не толкает поршень, а мешает ему двигаться, и на преодоление этого сопротивления тратится энергия. Представьте шарик, который катится по волнистой поверхности. Скатившись с горки, он никогда не поднимется на следующую горку той же высоты из-за трения и потерь. Здесь то же самое.
Даже если бы с магнитами все было идеально (а это вообще так??), в системе есть множество источников потерь, на преодоление которых тратится энергия, вырабатываемая генератором:
1. Трение в механизмах: Трение в коленвале, в подшипниках ротора двигателя/генератора. Это главный "пожиратель" энергии.
2. Сопротивление воздуха: Движущиеся части (ротор, поршни) испытывают аэродинамическое сопротивление.
3. Трение поршней о стенки шприцов: Чтобы обеспечить герметичность, поршни плотно прилегают к стенкам, возникает значительная сила трения.
4. Магнитные потери: В генераторе при преобразовании механической энергии в электрическую происходят потери на нагревание обмоток, вихревые токи (токи Фуко) и т.д.
5. Нагрузка от лампочки: Сама лампочка, когда светится, — это и есть цель системы и главный потребитель энергии. Энергия, ушедшая на свет и нагрев лампочки, безвозвратно теряется системой.
Что происходит на самом деле? Вы даете первоначальный импульс (крутите пальцами коленвал). Вы сообщаете системе некоторый запас кинетической энергии. Магниты и правда помогают "подтолкнуть" поршни в нужный момент, делая движение более плавным и используя часть этой начальной энергии. Генератор начинает вырабатывать ток, и лампочка загорается. Но! Для вращения ротора генератора требуется приложить усилие (возникает тормозящий момент). Генератор не просто крутится — он "сопротивляется" вращению, потому что создает электричество. Энергия, запасенная вами при начальном толчке, очень быстро (за секунды или доли секунды) тратится. Но почему на видео всё работает? #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели
🔔 Оксфордский электрический звонок: самый долгий научный эксперимент в мире, длящийся с 1840 года
⚡️ Вечный электромагнитный двигатель
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Ключевая проблема: Как только магнит прошел точку максимального сближения и начинает удаляться, чтобы цикл повторился, вы должны снова преодолеть магнитное притяжение/отталкивание, но теперь уже в обратную сторону. То есть, та самая "магнитная пружина" теперь не толкает поршень, а мешает ему двигаться, и на преодоление этого сопротивления тратится энергия. Представьте шарик, который катится по волнистой поверхности. Скатившись с горки, он никогда не поднимется на следующую горку той же высоты из-за трения и потерь. Здесь то же самое.
Даже если бы с магнитами все было идеально (а это вообще так??), в системе есть множество источников потерь, на преодоление которых тратится энергия, вырабатываемая генератором:
1. Трение в механизмах: Трение в коленвале, в подшипниках ротора двигателя/генератора. Это главный "пожиратель" энергии.
2. Сопротивление воздуха: Движущиеся части (ротор, поршни) испытывают аэродинамическое сопротивление.
3. Трение поршней о стенки шприцов: Чтобы обеспечить герметичность, поршни плотно прилегают к стенкам, возникает значительная сила трения.
4. Магнитные потери: В генераторе при преобразовании механической энергии в электрическую происходят потери на нагревание обмоток, вихревые токи (токи Фуко) и т.д.
5. Нагрузка от лампочки: Сама лампочка, когда светится, — это и есть цель системы и главный потребитель энергии. Энергия, ушедшая на свет и нагрев лампочки, безвозвратно теряется системой.
Что происходит на самом деле? Вы даете первоначальный импульс (крутите пальцами коленвал). Вы сообщаете системе некоторый запас кинетической энергии. Магниты и правда помогают "подтолкнуть" поршни в нужный момент, делая движение более плавным и используя часть этой начальной энергии. Генератор начинает вырабатывать ток, и лампочка загорается. Но! Для вращения ротора генератора требуется приложить усилие (возникает тормозящий момент). Генератор не просто крутится — он "сопротивляется" вращению, потому что создает электричество. Энергия, запасенная вами при начальном толчке, очень быстро (за секунды или доли секунды) тратится. Но почему на видео всё работает? #задачи #опыты #электродинамика #физика #видеоуроки #fun #physics #science #наука #двигатели
😨 Запрещенный генератор свободной энергии с использованием метода якоря
⚡️ Генератор Постоянного Движения
🔧 Картонный вентилятор
🧲 Магнитный двигатель
💦 Фонтан Герона
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤53👍21🔥10🤯4🗿4⚡2🤔2😭1🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Фигуры Лихтенберга возникают на/в твёрдых телах, жидкостях и газах или внутри них во время электрического пробоя. Это природные явления, обладающие фрактальными свойствами. Фигуры Лихтенберга названы в честь немецкого физика Георга Кристофа Лихтенберга, который первым их открыл и изучил. Когда их впервые обнаружили, считалось, что их характерные формы могут помочь раскрыть природу положительных и отрицательных электрических «жидкостей».
В 1777 году Лихтенберг сконструировал большой электрофор для получения высокого напряжения статического электричества с помощью индукции. После разряда высоковольтной точки на поверхность изолятора он записал полученные радиальные узоры, посыпав поверхность различными порошкообразными материалами. Затем, прижав к этим узорам чистые листы бумаги, Лихтенберг смог перенести и записать эти изображения, тем самым открыв основной принцип современной ксерографии. Это открытие также стало предвестником современной науки физики плазмы. Хотя Лихтенберг изучал только двумерные (2D) фигуры, современные исследователи в области высоких напряжений изучают 2D и 3D фигуры (электрические деревья) на изолирующих материалах и внутри них.
Физика процесса: Почему ветвится?
1. Пробой и стримеры: Под действием высокого напряжения электроны с острия катода начинают «вырываться» и ускоряться. Они сталкиваются с молекулами воздуха и дерева, выбивая новые электроны. Возникает лавина — стример. Это слабосветящийся канал ионизированного газа.
2. Случайность и предопределённость: Куда побежит следующий стример? Это зависит от локальной напряжённости электрического поля. В древесине всегда есть микронеоднородности: разная плотность, влажность, следы смолы. В этих местах поле усиливается, и пробой происходит именно там.
3. Эффект «опережающей струи» (The Streamer Leader Effect): Основной канал не движется вслепую. От его кончика постоянно исходят микро-стримеры-разведчики. Тот из них, кто находит путь с наименьшим сопротивлением, становится главным направлением для всей мощи разряда. Так и рождается фрактальная, древовидная структура.
⚡️ Цвет рассказывает историю. Ярко-белые или голубоватые участки в центре ветвей — это углерод, выгоревший при сверхвысокой температуре. Более светлые, почти жёлтые края — это часто частицы металла от электродов, испарившиеся и перенесённые разрядом. По цвету можно грубо определить температуру в разных зонах разряда.
⚡️ Это не только на дереве. Первооткрыватель, Георг Кристоф Лихтенберг, в XVIII веке получал их на поверхности смолы или стекла, посыпанной порошком (серы или сурика). Электроны «застревали» в диэлектрике, создавая скрытое изображение, которое проявлялось порошком. По сути, это была первая в истории электрофотография — прабабушка ксерокса.
⚡️ L-образные фигуры и природа электричества. Лихтенберг экспериментировал с разными типами электричества: «положительным» (от смоляных палочек) и «отрицательным» (от стеклянных). Он обнаружил, что они дают разные узоры! Отрицательные (от катода) — более ветвистые и кружевные, а положительные (от анода) — более плотные, пятнистые, иногда в форме розетки. Это связано с разной подвижностью электронов и положительных ионов.
⚡️ Фигуры в теле. При ударе молнии или контакте с высоковольтной линией такие же фигуры могут на несколько часов или дней проявиться на коже человека. Это результат подкожного кровоизлияния по пути пробоя. Явление называется «кераунография» (от греч. «кераунос» — молния). Это не ожог, а жутковатый «автограф» электрического разряда, идущего по сосудам. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤27⚡23👍12🔥7❤🔥3😱3🤩1
Media is too big
VIEW IN TELEGRAM
🧲⚡️Задачка по физике [электродинамика и магнетизм] для наших подписчиков: Почему поезд приходит в движение? Откуда возникает сила, толкающая вперед?
На видео простейший поезд на магнитах (из батарейки, магнитов и медного провода)
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
На видео простейший поезд на магнитах (из батарейки, магнитов и медного провода)
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
2🔥30❤17👍11⚡2❤🔥1👏1🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
До середины 19 века ночной город погружался во тьму, которую лишь кое-как рассеивали тусклые газовые рожки и масляные фонари. Но все изменилось с появлением настоящего «электрического солнца» — фонаря с угольной дугой. Это была первая по-настоящему эффективная форма электрического освещения, которая ослепила современников и навсегда изменила представление о ночном городе. В основе фонаря лежало явление вольтовой дуги — особого вида электрического разряда в газе.
▪️ Суть явления: Если два электрода (в нашем случае — угольных стержня) сначала коснуться, а затем немного раздвинуть, между ними продолжает течь электрический ток. Но теперь он проходит не по проводнику, а через ионизированный воздух — плазму.
▪️ Почему она светится: Электрическое поле в зазоре между электродами разгоняет свободные электроны. Эти "разогнанные" электроны сталкиваются с атомами газа (азота, кислорода) и "выбивают" из них другие электроны. Этот процесс называется ионизацией. При столкновениях часть энергии переходит в свет и колоссальное тепло. Температура в центре дуги может достигать 4000 °C — это выше температуры плавления большинства известных материалов.
🔦 Процесс горения дуги: как это работало в фонаре?
1. Зажигание: Фонарщик (или позднее автоматический механизм) сближал два угольных стержня до момента их соприкосновения. По цепи начинал течь ток.
2. Поджиг и разрыв: Концы стержней сильно разогревались из-за высокого сопротивления в точке контакта. Затем механизм немного (на несколько миллиметров) раздвигал стержни.
3. Рождение "солнца": Между раскаленными концами углей возникала та самая вольтова дуга. Воздух ионизировался, и мощный поток света и тепла устремлялся наружу. Свет был настолько ярок, что смотреть на него без защиты было больно для глаз.
4. Стабилизация и выгорание: Угольные стержни постепенно сгорали в этом адском пламени. Чтобы дуга не гасла, сложный механизм (регулятор) постоянно поддерживал идеальное расстояние между ними, медленно сдвигая стержни по мере их испарения.
Почему именно угольные стержни? Почему не медные или железные прутья? Ответ кроется в уникальных свойствах угля (графита):
1. Высокая температура плавления (возгонки): Уголь не плавится, как металл, а сразу переходит из твердого состояния в газообразное (сублимируется) при температуре около 3900 °C. Это одна из самых высоких температур среди известных тогда материалов. Металлический электрод просто расплавился бы и испарился за секунды, в то время как уголь мог относительно стабильно работать в плазме дуги.
2. Эмиссия электронов: Раскаленный уголь является отличным эмиттером электронов. При высоких температурах электроны в его атомах получают достаточно энергии, чтобы "вырваться" с поверхности и устремиться к противоположному электроду. Этот "электронный паром" — основа для поддержания стабильной дуги.
3. Хорошая электропроводность: Чистый уголь (графит) проводит электрический ток, что является обязательным условием для работы.
4. Относительная дешевизна: Угольные стержни было проще и дешевле производить в больших количествах, чем, например, стержни из тугоплавких металлов вроде вольфрама (которые стали использовать позже).
Несмотря на свою яркость, угольные дуговые фонари были неидеальны. Они требовали постоянного обслуживания (замены стержней каждые несколько часов), издавали шипение и характерный запах озона, а главное — были слишком мощными для небольших помещений. Их время пришлось на конец 19 - начало 20 века, когда они освещали главные площади, проспекты и фабрики. Но именно они проложили путь для своей более практичной и долговечной преемницы — лампы накаливания Лодыгина и Эдисона. #физика #опыты #эксперименты #наука #science #physics #электродинамика #видеоуроки #изобретения #радиофизика
⚡️ Фигуры Лихтенберга
🧲 Почему поезд приходит в движение?
📚 Фейнмановские лекции по физике [1976-1978] 💫
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥40❤26👍15⚡11
This media is not supported in your browser
VIEW IN TELEGRAM
Визуализация окружающих звуков с помощью ферромагнитной жидкости и электромагнита. Есть предположение, что внешний звук поступает в устройство через микрофон, а затем преобразуется в электромагнитные импульсы, а переменное магнитное поле заставляет двигаться каплю ферромагнитное жидкости.
#физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44❤19🔥16⚡4🤯4
This media is not supported in your browser
VIEW IN TELEGRAM
На видео ртутный выключатель (или ртутный геркон). Удивительное и немного алхимическое устройство, которое многие помнят из советских приборов. Как это работает? Внутри стеклянной колбочки находятся два контакта и капля ртути. Пока выключатель находится в одном положении, контакты разомкнуты. Но стоит его наклонить — капля ртути скатывается и замыкает их, замыкая цепь. Никаких щелчков, только плавное замыкание.
Концепция использования ртути для замыкания цепи известна давно, но массовое применение в таких миниатюрных стеклянных корпусах стало возможным с развитием технологии герконов (герметизированных контактов) в середине XX века. Сложно назвать одного изобретателя; это была скорее эволюция технологий, подхваченная инженерами по всему миру, включая СССР.
1. Советские игрушки и электромеханика: Легендарный набор «Знаток», различные конструкторы.
2. Автомобили: В старых «Жигулях» и «Москвичах» ртутные выключатели использовались в датчиках уровня тормозной жидкости. Жидкость опускалась — датчик наклонялся — загоралась лампочка на панели.
3. Бытовая техника: В некоторых моделях стиральных машин (например, «Вятка-автомат») они служили датчиками уровня воды.
4. Системы сигнализации: Использовались как датчики наклона для защиты ценных предметов. Стоило сдвинуть предмет — цепь замыкалась, включалась тревога.
5. Термостаты в некоторых моделях обогревателей.
Физика в действии: почему именно ртуть?
▪️ Высокая электропроводность: Ртуть — это жидкий металл, поэтому она отлично проводит ток.
▪️ Подвижность: Благодаря жидкому состоянию, она мгновенно и плавно замыкает контакты без дребезга, который характерен для обычных металлических пластин.
▪️ Поверхностное натяжение: Капля ртути не растекается, а сохраняет форму шара, что позволяет ей точно скатываться по нужной траектории.
▪️ Высокая плотность: Ртуть тяжелая, поэтому она уверенно скатывается даже при небольшом наклоне.
Почему от них отказались? Главная причина — токсичность ртути. Разбитая колбочка с парами ртути — это реальная опасность для здоровья. С развитием электроники им на смену пришли более безопасные и дешёвые твердотельные датчики: шариковые, MEMS-гироскопы и акселерометры в смартфонах, оптические датчики. #физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍105❤43🔥21⚡8🤔4🤩4❤🔥1
Media is too big
VIEW IN TELEGRAM
Все, кто видел ЗРК «Куб», наверняка обращали внимание на его остроконечные ракеты. Но что находится внутри этой самой носовой части? Именно там спрятано сердце системы наведения — головка самонаведения (ГСН) 1SB4M. И её описание звучит как магия из 1960-х: непрерывноволновая полуактивная самонаводящаяся когерентная двухплоскостная моноимпульсная ГСН. Разберем эту длинную формулировку по косточкам, чтобы понять гениальность советских инженеров.
▪️ 1. Полуактивная — Это значит, что ракета не освещает цель своим собственным радаром. Цель подсвечивается мощным лучом от станции наведения (СНР 1С91 с машины комплекса). Ракета же лишь «прислушивается» к отраженному от цели сигналу. Экономит энергию и делает систему менее заметной.
▪️ 2. Непрерывноволновая — Станция подсвета излучает не короткие импульсы, а непрерывный сигнал. Это позволяет с очень высокой точностью определять скорость сближения с целью благодаря Допплеровскому эффекту.
▪️ 3. Когерентная — Это сложное слово означает, что все сигналы (исходный и отраженный) согласованы по фазе. Это позволяет системе эффективно отфильтровывать помехи и выделять слабый отраженный сигнал на фоне земной поверхности и прочих шумов.
▪️ 4. Моноимпульсная и двухплоскостная — Сверхточность! Это ключевое преимущество.
➖ Обычные ГСН могли «качать» луч, чтобы поймать цель и строить траекторию, что занимало время.
➖ Моноимпульсная ГСН 1SB4M определяет угловое положение цели практически мгновенно, за один отраженный импульс (отсюда и «моно»).
➖ Двухплоскостная означает, что она делает это одновременно в двух плоскостях — по азимуту (влево-вправо) и по углу места (вверх-вниз). Это позволяет ракете не просто лететь в сторону цели, а строить точнейшую траекторию перехвата.
Вся эта сложная система, упакованная в носовой обтекатель, позволяла ракете 3М9 комплекса «Куб» эффективно бороться с маневрирующими целями на малых и средних высотах. Это была передовая технология для своего времени, обеспечившая «Кубу» грозную репутацию на полях сражений.
1. Ракета не освещает цель сама. Это делает станция наведения с земли. ГСН ракеты лишь «слышит» отраженный от цели сигнал. Здесь в игру вступает Эффект Доплера. Тот самый, из-за которого звук сирены скорой помощи кажется выше при приближении и ниже при удалении. Частота принятого сигнала (f₁) сравнивается с частотой эталонного сигнала (f₀), который ракета знает. Если цель приближается, частота отраженного сигнала повышается. Если цель удаляется — понижается. Разница этих частот (f₁ - f₀ = Δf) называется доплеровским смещением. По его величине ракета с высочайшей точностью вычисляет радиальную скорость сближения с целью. Это позволяло ракете «понимать», что она догоняет маневренный самолет, а не просто летит в пустоту.
2. «Когерентность» означает, что излучаемый и эталонный сигналы имеют строго согласованную, предсказуемую фазу. Представьте себе два идеально ровных ряда солдат, марширующих в ногу. Это — когерентные сигналы. Помехи или отражения от земли — это как толпа, бегущая вразнобой. ГСН 1SB4M была способна выделять слабый, но «стройный» сигнал, отраженный от цели, на фоне мощных, но «нестройных» помех и отражений от подстилающей поверхности. Это достигалось за счет селекции именно по доплеровскому смещению: земля относительно ракеты почти не движется (Δf ≈ 0), а у самолета — значительное смещение. Ракета просто «не видела» мешающие объекты.
3. Моноимпульсная и двухплоскостная = Сверхточное пеленгование. Обычные ГСН того времени определяли направление на цель, «раскачивая» луч и сравнивая силу сигнала в разные моменты времени (метод конического сканирования). Это было медленно и уязвимо для помех. Моноимпульсный метод решает задачу мгновенно. Сравнивая амплитуды и фазы сигналов во всех четырех каналах за один прием импульса (отсюда «моно»), система с высочайшей точностью вычисляет угол между своей осью и направлением на цель. #физика #ракеты #электродинамика #наука #технологии #physics #электроника #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍84🔥37❤22😱6⚡3❤🔥2