Media is too big
VIEW IN TELEGRAM
⚙️ Редуктор из LEGO с огромным передаточным числом
⚙️ Моделирование решения задачи передвижения автомобилей по песчаному грунту с помощью конструктора LEGO
⛔️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать
⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!
🎻 Когда Lego играет на гитаре лучше, чем ты...
⚙️ Lego MindStorm
👾 Что будет, если надолго оставить инженера с конструктором Lego
#техника #конструктор #ARM #программирование #механика #разработка #микроконтроллеры
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
111🔥148👍40❤9❤🔥6✍2🆒2⚡1🤩1👻1
🌕 📝 ⚙️ Энергия от солнца: солнечная электростанция «Шоухан Дуньхуан», расположенная в пустыне Гоби, в 20 км к западу от города Дуньхуан провинции Ганьсу.
Принцип работы: 12 тысяч гигантских зеркал-гелиостатов, выложенных по кругу, отражают солнечный свет на 260-метровую теплопоглощающую башню. В верхней части башни поглотитель тепла накапливает энергию для нагрева расплавленной соли, протекающей внутри. Расплав соли затем генерирует пар с высокой температурой и высоким давлением, который приводит в действие паротурбинный генератор для выработки электроэнергии.
Мощность: станция способна вырабатывать до 100 мегаватт энергии.
Это пример того, как современные технологии и возобновляемые источники энергии могут работать вместе, не нанося вреда окружающей среде.
SolarReserve — компания, предлагающая использовать расплавленную соль в солнечных электростанциях и работающая над альтернативным решением проблем хранения. Вместо использования солнечной энергии для выработки электроэнергии и дальнейшего хранения её в солнечных батареях, SolarReserve предлагает перенаправлять её на тепловые накопители (башни). Энергетическая башня будет получать и хранить энергию. Способность расплавленной соли оставаться в жидкой форме делает из неё совершенное средство для термального хранения.
Задача компании — доказать, что её технология может сделать солнечную энергию доступным источником энергии, работающим круглосуточно (как на любой электростанции, работающей на ископаемом топливе). Концентрированный солнечный свет нагревает в башне соль до 566 °C, и она хранится в гигантском изолированном резервуаре, пока не будет использована для создания пара для запуска турбины. Впрочем, обо всём по порядку.
Главный технолог SolarReserve, Уильям Гулд более 20 лет потратил на развитие технологии CSP (concentrated solar power) с расплавленной солью. В 1990-х годах он был руководителем проекта демонстрационной установки Solar Two, построенной при поддержке Министерства энергетики США в пустыне Мохаве. Десятилетием раньше там же проверяли сооружение, которое подтвердило теоретические расчеты, о возможности коммерческой выработки энергии с помощью гелиостатов. Задача Гулда заключалась в том, чтобы разработать аналогичный проект, в котором вместо пара используется нагретая соль, а также найти доказательства, что энергия может быть сохранена.
При выборе ёмкости для хранения расплавленной соли Гулд колебался между двумя вариантами: производителем котлов с опытом работы на традиционных электростанциях, работающих на ископаемом топливе, и компанией Rocketdyne, которая производила ракетные двигатели для НАСА. Выбор был сделан в пользу ракетостроителей. Отчасти из-за того, что в начале своей карьеры Гулд работал инженером-ядерщиком в гигантской строительной компании Bechtel, работавшей над калифорнийскими реакторами San Onofre. И считал, что не найдёт более надёжной технологии.
Сопло реактивного двигателя, из которого вырываются горячие газы, на самом деле состоит из двух обечаек (внутренней и внешней), в фрезерованных каналах которых прокачиваются топливные компоненты в жидкой фазе, охлаждая металл и удерживая сопло от плавления. Опыт Rocketdyne в разработке подобных устройств и работе в сфере высокотемпературной металлургии пригодился при разработке технологии использования расплавленной соли на солнечной электростанции.
Проект Solar Two мощностью 10 МВт успешно функционировал в течение нескольких лет и был выведен из эксплуатации в 1999 году, подтвердив жизнеспособность идеи. Как признаётся сам Уильям Гулд, у проекта были некоторые проблемы, которые нужно было решить. Но основная технология, используемая в Solar Two, работает и в современных станциях вроде Crescent Dunes. Смесь нитратных солей и рабочие температуры идентичны, отличие лишь в масштабах станции.
Преимущество технологии использования расплавленной соли заключается в том, что она позволяет поставлять мощность по требованию, а не только тогда, когда светит солнце.
#физика #техника #оптика #генераторы #изобретения #наука #physics #science
💡 Physics.Math.Code // @physics_lib
Принцип работы: 12 тысяч гигантских зеркал-гелиостатов, выложенных по кругу, отражают солнечный свет на 260-метровую теплопоглощающую башню. В верхней части башни поглотитель тепла накапливает энергию для нагрева расплавленной соли, протекающей внутри. Расплав соли затем генерирует пар с высокой температурой и высоким давлением, который приводит в действие паротурбинный генератор для выработки электроэнергии.
Мощность: станция способна вырабатывать до 100 мегаватт энергии.
Это пример того, как современные технологии и возобновляемые источники энергии могут работать вместе, не нанося вреда окружающей среде.
SolarReserve — компания, предлагающая использовать расплавленную соль в солнечных электростанциях и работающая над альтернативным решением проблем хранения. Вместо использования солнечной энергии для выработки электроэнергии и дальнейшего хранения её в солнечных батареях, SolarReserve предлагает перенаправлять её на тепловые накопители (башни). Энергетическая башня будет получать и хранить энергию. Способность расплавленной соли оставаться в жидкой форме делает из неё совершенное средство для термального хранения.
Задача компании — доказать, что её технология может сделать солнечную энергию доступным источником энергии, работающим круглосуточно (как на любой электростанции, работающей на ископаемом топливе). Концентрированный солнечный свет нагревает в башне соль до 566 °C, и она хранится в гигантском изолированном резервуаре, пока не будет использована для создания пара для запуска турбины. Впрочем, обо всём по порядку.
Главный технолог SolarReserve, Уильям Гулд более 20 лет потратил на развитие технологии CSP (concentrated solar power) с расплавленной солью. В 1990-х годах он был руководителем проекта демонстрационной установки Solar Two, построенной при поддержке Министерства энергетики США в пустыне Мохаве. Десятилетием раньше там же проверяли сооружение, которое подтвердило теоретические расчеты, о возможности коммерческой выработки энергии с помощью гелиостатов. Задача Гулда заключалась в том, чтобы разработать аналогичный проект, в котором вместо пара используется нагретая соль, а также найти доказательства, что энергия может быть сохранена.
При выборе ёмкости для хранения расплавленной соли Гулд колебался между двумя вариантами: производителем котлов с опытом работы на традиционных электростанциях, работающих на ископаемом топливе, и компанией Rocketdyne, которая производила ракетные двигатели для НАСА. Выбор был сделан в пользу ракетостроителей. Отчасти из-за того, что в начале своей карьеры Гулд работал инженером-ядерщиком в гигантской строительной компании Bechtel, работавшей над калифорнийскими реакторами San Onofre. И считал, что не найдёт более надёжной технологии.
Сопло реактивного двигателя, из которого вырываются горячие газы, на самом деле состоит из двух обечаек (внутренней и внешней), в фрезерованных каналах которых прокачиваются топливные компоненты в жидкой фазе, охлаждая металл и удерживая сопло от плавления. Опыт Rocketdyne в разработке подобных устройств и работе в сфере высокотемпературной металлургии пригодился при разработке технологии использования расплавленной соли на солнечной электростанции.
Проект Solar Two мощностью 10 МВт успешно функционировал в течение нескольких лет и был выведен из эксплуатации в 1999 году, подтвердив жизнеспособность идеи. Как признаётся сам Уильям Гулд, у проекта были некоторые проблемы, которые нужно было решить. Но основная технология, используемая в Solar Two, работает и в современных станциях вроде Crescent Dunes. Смесь нитратных солей и рабочие температуры идентичны, отличие лишь в масштабах станции.
Преимущество технологии использования расплавленной соли заключается в том, что она позволяет поставлять мощность по требованию, а не только тогда, когда светит солнце.
#физика #техника #оптика #генераторы #изобретения #наука #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤51👍44🔥10🙈5😱3🤔2🤝1🗿1
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
1. Как устроен автомобильный двигатель. 3D анимация сборки автомобильного двигателя внутреннего сгорания.
2. Как работает двухтактный двигатель скутера
3. Двигатель в разрезе
4. Как работает паровой двигатель
5. Двигатель Стирлинга
6. Миниатюрный паровой двигатель
7. Мини-двигатель с AliExpress
8. Паровой или реактивный двигатель
9. Конструкция ДВС
10. Конструирование систем смазки и охлаждения ДВС #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
🐝 «Nano Bee». Двигатель объемом 0,006 см³
Самый маленький четырехцилиндровый ДВС в мире
⚙️ Авиационный гироскоп
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍51🔥16❤13❤🔥4🤩2⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
▪️Двухтактный двигатель. Принцип работы: один полный рабочий цикл (впуск, сжатие, рабочий ход и выпуск) происходит за два такта поршня.
— Отдельного газораспределительного механизма нет — роль впускных и выпускных клапанов выполняют отверстия в стенках цилиндра.
— Топливо обычно смешивается с маслом для смазки движущихся частей.
— Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырёхтактного за счёт большего числа рабочих циклов. Однако неполное использование хода поршня для расширения и затраты части вырабатываемой мощности на продувку приводят к увеличению мощности только на 60–70%.
▪️Четырехтактный двигатель. Принцип работы: рабочий цикл состоит из четырёх тактов (ходов поршня).
— Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм.
— Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала.
— Расход топлива ниже, так как топливная смесь полностью сгорает в цилиндре, и только потом, когда открывается выпускной клапан, отработанные газы выходят наружу.
— Экологичность — за счёт полного сгорания топливной смеси выделяется меньше вредных веществ в атмосферу.
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80❤32🔥11❤🔥3⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
Лазерная очистка — метод удаления загрязнений, коррозии и покрытий с металлических поверхностей с использованием направленного высокоэнергетического лазерного луча. В отличие от традиционных методов (абразивных, химических, механических), лазерная технология обеспечивает точную, бесконтактную и экологичную обработку.
Применение:
▪️ Машиностроение — подготовка металлических деталей к дальнейшей обработке или окраске.
▪️ Авиация и аэрокосмическая промышленность — удаление старых покрытий и коррозии с деталей самолётов и космических аппаратов.
▪️ Ремонт и восстановление — восстановление старинных металлических изделий, таких как памятники, оружие или предметы искусства.
▪️ Нефтегазовая отрасль — подготовка трубопроводов и других металлических компонентов, освобождение их от отложений и коррозии.
▪️ Строительство и архитектура — подготовка металлических конструкций, очистка фасадов зданий и памятников от загрязнений и лишних покрытий.
Принцип работы: Процесс лазерной очистки основан на селективном поглощении и испарении загрязнений:
1. Лазерный луч с определённой длиной волны направляется на металлическую поверхность.
2. Загрязняющие вещества (ржавчина, окалина, краска) поглощают энергию лазерного излучения, в то время как сам металл отражает большую часть излучения.
3. Поглощённая энергия вызывает быстрое нагревание и испарение загрязняющих веществ.
4. Испаренные загрязнения удаляются с поверхности потоком инертного газа (например, азота или аргона).
Параметры лазера, такие как длительность импульса, мощность и частота повторения, можно регулировать для оптимизации процесса очистки различных материалов и толщин загрязнений.
#лазер #техника #science #физика #physics #производство
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥72👍27❤19⚡6✍3🤔1👻1🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
▪️ В качестве активной среды — кристалл искусственного рубина ( оксид алюминия Al₂O₃ с небольшой примесью хрома Cr ).
▪️ Из кристалла был изготовлен стержень в виде цилиндра диаметром 1 и длиной 2 см, который в процессе работы подвергался облучению излучением импульсной газоразрядной лампы.
▪️ Резонатором служил резонатор Фабри-Перо, образованный серебряными зеркальными покрытиями, нанесёнными на торцы стержня.
▪️ Лазер работал в импульсном режиме, излучая свет с длиной волны 694,3 нм.
▪️ Майман предложил принцип накачки рабочего тела — короткими вспышками света от лампы-вспышки.
▪️ Зеркальные покрытия на торцах кристалла создавали положительную обратную связь, чтобы усилитель стал генератором.
▪️ Расчёты Маймана показали, что атомы хрома в кристалле рубина имеют подходящую систему энергетических уровней, которая делает возможной генерацию лазерного излучения.
▪️ Первый лазер Маймана стал отправной точкой для развития лазерных технологий. Лазеры стали незаменимыми инструментами в физике, химии, биологии и других научных дисциплинах, позволили учёным проводить более точные эксперименты и измерения.
▪️ Лазеры стимулировали дальнейшие исследования и инновации в области оптики и фотоники, привели к разработке новых типов лазеров, увеличению мощности и эффективности.
Импульсные лазеры мощнее непрерывных в плане мощности:
▫️Непрерывные лазеры характеризуются постоянной выходной мощностью, которая может достигать десятков киловатт. Это делает их идеальными для задач, требующих высокой мощности на протяжении длительного времени, таких как лазерная резка или сварка металлов.
▫️Импульсные лазеры работают иначе — они передают энергию в короткие, мощные вспышки. Это делает их менее энергоёмкими, поскольку импульсы могут достигать высокой пиковой мощности при минимальном общем энергопотреблении. Такой подход позволяет выполнять точные, деликатные работы, не перегревая материал.
Таким образом, для крупных производств, где необходима высокая мощность и стабильность, лучше подойдут непрерывные лазеры, а для точных задач, таких как микросварка, очистка поверхности или гравировка, рекомендуется использовать импульсные лазеры. #лазер #техника #science #физика #physics #производство
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍58⚡50❤41🔥18😱4🤩3🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
Лазерная наплавка — метод нанесения нового слоя металла на деталь или заготовку с помощью сфокусированного лазерного излучения в среде защитного газа. Применяется для восстановления гребного винта — устранения эрозионных разрушений лопастей, которые возникают из-за коррозии и износа в морской воде.
Процесс наплавки гребного винта лазерной сваркой включает несколько этапов:
1. Подготовка поверхности — изношенный слой металла удаляют до чистового с помощью механической обработки (токарной, фрезерной или шлифовальной).
2. Выбор материала — для наплавки используют специальный металлический порошок или сплав, выбор зависит от свойств детали, условий эксплуатации и требований к восстановлению.
3. Лазерное воздействие — мощный лазерный луч фокусируется на поверхности, энергия лазера нагревает поверхность до температуры плавления, создавая «ванну расплава».
4. Наплавка материала — металлический порошок или проволока подаются на плавящуюся поверхность, материал моментально плавится и сливается с базовой поверхностью, образуя новый металлический слой.
5. Контроль нанесения — процесс контролируется с высокой точностью, позволяя равномерно наносить слой материала и достичь желаемых геометрических характеристик.
6. Охлаждение — после наплавки деталь быстро остывает, что предотвращает коробление и разупрочнение основного металла.
7. Финишная обработка — проточка, шлифовка или фрезерование для достижения нужной геометрии и шероховатости.
Специалисты отмечают, что лазерная наплавка позволяет увеличить срок службы гребного винта — наплавленный слой превосходит основной металл по физико-механическим свойствам, исключаются поры и несплавления. Однако есть и ограничения: заниженная мощность излучения (менее 1,4 кВт) может привести к образованию внутренних структурных дефектов (пор, несплавлений), а высокая мощность (более 2,2 кВт) — к дефектам структуры, перегревая ванну расплава. #лазер #техника #science #физика #physics #производство
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥91👍34❤19🤯5⚡2🗿1
🧐 А что если для работы не нужен особо дорогой компьютер?... Да ну нет, бред какой-то...
👨🏻💻 Товарищи инженеры, давайте по одному фото своего рабочего места / сетапа / компьютерного стола в комментарии. Ну и свой род деятельности напишите. Посмотрим корреляцию между сложностью работы и дороговизной оборудования.
🖥 Пару слов о железе — приветствуется.
🖥 или 🖥 для работы ?
🖥 или 🖥 или 🖥 для графики ?
🖥 или🖥 или 🖥 или 🍏 в качестве рабочей OS ?
🖥 или 🍏 ?
#hardware #железо #техника #программирование #ночной_чат #разработка #development #computer_science
💡 Physics.Math.Code // @physics_lib
👨🏻💻 Товарищи инженеры, давайте по одному фото своего рабочего места / сетапа / компьютерного стола в комментарии. Ну и свой род деятельности напишите. Посмотрим корреляцию между сложностью работы и дороговизной оборудования.
#hardware #железо #техника #программирование #ночной_чат #разработка #development #computer_science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥56❤17👍15👨💻6🗿5✍1🤩1🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
Это гибкая связь между двумя вращающимися частями: стартер и двигатель, например.
Если вы хотите передавать крутящий момент между двумя нефиксированными, почти параллельными, несоосными осями, то выгодно использовать гибкие ремни.
▪️ Первоначально нет чистого крутящего момента, поэтому форма муфты определяется тем, что каждая полоса действует как пружина, и они действуют друг против друга.
▪️ Когда приводной двигатель начинает вращаться, крутящий момент становится наибольшей силой, поэтому муфта закручивается вверх.
▪️ Когда он достигает рабочей скорости, центростремительная сила лент становится наибольшей, поэтому средние части снова выскакивают.
Преимущества: отличная изоляция между двигателем и нагрузкой, относительно высокий КПД при использовании постоянной угловой скорости/крутящего момента, очень простой и легкий ремонт.
Проблемы: Максимальная крутящая нагрузка пропорциональна модулю Юнга лент, а также пределу прочности на разрыв. Медленная реакция.
Гибкая подвижная муфта (гибкая, подвижная, компенсирующая) — это устройство, которое позволяет валам немного смещаться относительно друг друга, но при этом обеспечивает их надёжное соединение. Такие муфты компенсируют угловые, осевые и радиальные смещения валов, а также гасят вибрации и удары, возникающие при работе механизмов. #механика #физика #техника #physics #двигатель #engine #maths #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍111❤23🔥18✍3😱2❤🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Самодельный лазерный уровень 🔴
В последнее время все чаще стала появляться техника, работающая с применением лазерной технологии, например, принтеры, медицинское оборудование, лабораторные приборы и т.д. А знаете ли Вы, что физическая основа лазерного излучения была предсказана еще Альбертом Эйнштейном в 1916 году? Но до изобретения первого лазера было еще далеко. После многочисленных исследований ученых-физиков только в 1960 году Теодор Мейман представил миру первый лазер, излучающий волну за счет искусственного рубина. Изначально луч проецировался в инфракрасном диапазоне, а чуть позже была применена технология окрашивания, и излучение приобрело красный цвет. Это открытие считается одним из самых значимых, совершенных в XX веке. Лазерные технологии стали применяться в космической, военной, промышленной сфере, а в повседневную жизнь человека они вошли только в XXI веке, но сразу охватили практически все сферы деятельности, в том числе, строительство и ремонт.
Около 20 лет назад лазерное излучение стало применяться в измерительных приборах – нивелирах. Это в значительной степени облегчило проведение строительных, отделочных и монтажных работ. Ведь для нанесения разметки не нужно делать сложные замеры, достаточно спроецировать на объект лазерный луч и получить идеально ровную линию. #лазер #техника #science #физика #physics #производство
🔥 Наплавка гребного винта лазерной сваркой
💥 Первый лазер
💥 Лазерная очистка поверхности старой монеты
💥 Лазерная резка
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
В последнее время все чаще стала появляться техника, работающая с применением лазерной технологии, например, принтеры, медицинское оборудование, лабораторные приборы и т.д. А знаете ли Вы, что физическая основа лазерного излучения была предсказана еще Альбертом Эйнштейном в 1916 году? Но до изобретения первого лазера было еще далеко. После многочисленных исследований ученых-физиков только в 1960 году Теодор Мейман представил миру первый лазер, излучающий волну за счет искусственного рубина. Изначально луч проецировался в инфракрасном диапазоне, а чуть позже была применена технология окрашивания, и излучение приобрело красный цвет. Это открытие считается одним из самых значимых, совершенных в XX веке. Лазерные технологии стали применяться в космической, военной, промышленной сфере, а в повседневную жизнь человека они вошли только в XXI веке, но сразу охватили практически все сферы деятельности, в том числе, строительство и ремонт.
Около 20 лет назад лазерное излучение стало применяться в измерительных приборах – нивелирах. Это в значительной степени облегчило проведение строительных, отделочных и монтажных работ. Ведь для нанесения разметки не нужно делать сложные замеры, достаточно спроецировать на объект лазерный луч и получить идеально ровную линию. #лазер #техника #science #физика #physics #производство
🔥 Наплавка гребного винта лазерной сваркой
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥135👍51❤30🙈11❤🔥6✍3🤯1😨1🆒1