Media is too big
VIEW IN TELEGRAM
Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.
Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥57👍30❤19🤨2🆒2❤🔥1🤓1
This media is not supported in your browser
VIEW IN TELEGRAM
Визуализация окружающих звуков с помощью ферромагнитной жидкости и электромагнита. Есть предположение, что внешний звук поступает в устройство через микрофон, а затем преобразуется в электромагнитные импульсы, а переменное магнитное поле заставляет двигаться каплю ферромагнитное жидкости.
#физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #научные_фильмы #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45❤19🔥16⚡4🤯4
This media is not supported in your browser
VIEW IN TELEGRAM
На видео ртутный выключатель (или ртутный геркон). Удивительное и немного алхимическое устройство, которое многие помнят из советских приборов. Как это работает? Внутри стеклянной колбочки находятся два контакта и капля ртути. Пока выключатель находится в одном положении, контакты разомкнуты. Но стоит его наклонить — капля ртути скатывается и замыкает их, замыкая цепь. Никаких щелчков, только плавное замыкание.
Концепция использования ртути для замыкания цепи известна давно, но массовое применение в таких миниатюрных стеклянных корпусах стало возможным с развитием технологии герконов (герметизированных контактов) в середине XX века. Сложно назвать одного изобретателя; это была скорее эволюция технологий, подхваченная инженерами по всему миру, включая СССР.
1. Советские игрушки и электромеханика: Легендарный набор «Знаток», различные конструкторы.
2. Автомобили: В старых «Жигулях» и «Москвичах» ртутные выключатели использовались в датчиках уровня тормозной жидкости. Жидкость опускалась — датчик наклонялся — загоралась лампочка на панели.
3. Бытовая техника: В некоторых моделях стиральных машин (например, «Вятка-автомат») они служили датчиками уровня воды.
4. Системы сигнализации: Использовались как датчики наклона для защиты ценных предметов. Стоило сдвинуть предмет — цепь замыкалась, включалась тревога.
5. Термостаты в некоторых моделях обогревателей.
Физика в действии: почему именно ртуть?
▪️ Высокая электропроводность: Ртуть — это жидкий металл, поэтому она отлично проводит ток.
▪️ Подвижность: Благодаря жидкому состоянию, она мгновенно и плавно замыкает контакты без дребезга, который характерен для обычных металлических пластин.
▪️ Поверхностное натяжение: Капля ртути не растекается, а сохраняет форму шара, что позволяет ей точно скатываться по нужной траектории.
▪️ Высокая плотность: Ртуть тяжелая, поэтому она уверенно скатывается даже при небольшом наклоне.
Почему от них отказались? Главная причина — токсичность ртути. Разбитая колбочка с парами ртути — это реальная опасность для здоровья. С развитием электроники им на смену пришли более безопасные и дешёвые твердотельные датчики: шариковые, MEMS-гироскопы и акселерометры в смартфонах, оптические датчики. #физика #магнетизм #электродинамика #опыты #эксперименты #physics #видеоуроки #электроника #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍106❤43🔥21⚡8🤔4🤩4❤🔥1
Речь идет о старых советских компасах, часах и других приборах (особенно военных и авиационных), циферблаты которых светились в темноте. Это свечение было не просто краской. Это была радиолюминесцентная краска на основе радия-226 (Ra-226). Того самого радия, который открыли Мария и Пьер Кюри.
Радий-226 — мощный альфа-излучатель. Его частицы бомбардировали люминофор в краске, заставляя его светиться ровным зеленым светом без подзарядки от солнца. Это было практично и надежно, но имело обратную сторону: радий распадается на радон, а сама краска со временем может трескаться и пылить, создавая потенциальную опасность при вдыхании. Но настоящую магию этого скрытого излучения можно увидеть только с помощью специального прибора — камеры Вильсона.
Камера Вильсона — это простой, но гениальный детектор частиц. В ней создается перенасыщенный пар, и когда заряженная частица (как альфа-частица от радия) пролетает через него, она оставляет за собой след из капелек, как самолет в небе.
На этом видео старый советский компас поместили в камеру Вильсона. И то, что невидимо для наших глаз, внезапно ожило! Компас буквально расцвел белыми треками — это и есть видимые следы альфа-частиц, которые испускают атомы радия из своей "безобидной" на вид светящейся краски. Для коллекционера такой предмет, находящийся в неповрежденном состоянии и снаружи, как правило, не представляет серьезной сиюминутной угрозы. Главная опасность — в вдыхании или проглатывании частичек отслоившейся краски. Но это лишний повод обращаться с такими артефактами аккуратно и хранить их в проветриваемом помещении. Наука — это инструмент, который позволяет увидеть невидимое и напомнить о сложном наследии технологического прогресса. #физика #physics #опыты #эксперименты #фотоэффект #радиоактивность #ядерная_физика #атомная_физика
📕 Радиоактивность [2013] Алиев Р.А., Калмыков С.Н.
☢️ Атом: энергия мира [2024]
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥44❤21👍10🤔5💯2🤩1
Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.
Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.
Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).
Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.
Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты
💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.
🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤36👍17🔥10⚡2🥰2🤩1🙈1
Media is too big
VIEW IN TELEGRAM
Почему это работает:
➖ Разные материалы имеют разную теплоёмкость и теплопроводность. От одного и того же теплового импульса металл и пластик нагреются по-разному.
➖ В игру вступает геометрия. Даже у однородного объекта края и грани будут прогреваться иначе, чем плоские поверхности, из-за разного угла к потоку воздуха.
Итог: на монотонном тепловом фоне проступают четкие контуры и внутренняя структура предмета, которые были абсолютно невидимы до нагрева некоторое время назад. Тепловизор показывает только температуру, на его самое важное свойство — отследить изменения по отношению к другим предметам.
Факты из физики:
1. Материал. Металлические пассатижи и пластиковый стол или ручки получат одинаковую "дозу" тепла. Но металл (высокая теплопроводность) быстро распределит его по себе и отдаст столу, а пластик (низкая теплопроводность) — останется горячим дольше и будет ярко светиться.
2. Геометрия. Острый угол или ребро предмета будут обдуваться интенсивнее и прогреваться сильнее, чем плоская поверхность, обращенная к фону. Из-за этого контур объекта "проявится" даже если он сделан из одного материала.
Этот принцип лежит в основе многих методов неразрушающего контроля, когда нужно найти дефект под поверхностью.
Автор видео: @Enigma1938
🔥 Тепловой взрыв при изохорическом нагревании газа 💨
🔥 Индукционный нагрев
🪙 Монета против силы тока⚡️
#видеоуроки #physics #физика #опыты #электродинамика #электричество #магнетизм #эксперименты #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥65❤29👍22🫡4🤯3⚡1😱1
This media is not supported in your browser
VIEW IN TELEGRAM
Описание физических процессов:
1. Батарейка создает разность потенциалов (напряжение). Магнит, прикрепленный к отрицательному полюсу ("–"), служит токопроводящим основанием. Медная спираль является проводником. Ее верхний конец касается положительного полюса батарейки ("+"), а нижний, заостренный конец, — поверхности магнита. По цепи начинает течь электрический ток. Направление тока — от плюса к минусу, то есть сверху вниз по спирали.
2. Согласно закону Ампера, любой проводник с током создает вокруг себя собственное магнитное поле. В данном случае спираль ведет себя как одна виток катушки, и ее магнитное поле похоже на поле маленького плоского магнита.
3. У нас есть два магнитных поля: поле постоянного магнита и поле, создаваемое током в спирали. Эти два поля начинают взаимодействовать. С точки зрения физики, проще рассматривать это взаимодействие не как "столкновение" полей, а через действие силы Лоренца на движущиеся заряды.
4. Сила Лоренца — это сила, которая действует на заряженную частицу (в нашем случае — на электроны, но так как ток условно направлен противоположно движению электронов, мы рассматриваем условное положительное движение зарядов), движущуюся в магнитном поле. Формула силы: F = q * [v × B]
5. Рассматриваю одну из петель спирали, мы можем понять, что возникают вращающий момент. Этот момент и заставляет медную спираль вращаться вокруг своей оси. #задачи #физика #электродинамика #магнетизм #опыты #physics #эксперименты
⚡️Задачка для наших физиков
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍67❤33🔥10🤯5⚡2💯2
Media is too big
VIEW IN TELEGRAM
Малоизвестные факты, которые вас удивят:
▪️ 1. Не трение, а контактная разность потенциалов.
Главный «миф»: заряд создаётся трением. На самом деле, основную работу делает контактная разность потенциалов. Когда два разных материала (например, резина и пластик) соприкасаются, электроны перескакивают с одного на другой даже без трения! Трение просто усиливает площадь контакта.
▪️ 2. Заряд живёт только на поверхности.
Это следствие теоремы Ирншоу и поведения проводников. Электроны отталкиваются друг от друга и стремятся занять позиции как можно дальше. В итоге весь заряд концентрируется на внешней поверхности сферы. Если бы шар был полым, ничего бы не изменилось!
▪️ 3. Настоящая опасность — не напряжение, а ёмкость.
Генератор может создавать 500 000 вольт, но удар от него обычно безопасен. Почему? Потому что заряд (количество электронов) и электрическая ёмкость сферы очень малы [кто сможет вывести формулу для ёмкости сферы?]. Это как сравнивать укол тонкой иглой и удар копья. Высокое напряжение есть, но запасённой энергии недостаточно для серьёзного вреда.
▪️ 4. Он может «стрелять» молниями, но не может питать лампочку.
Генератор — источник высокого напряжения, но мизерного тока. Он создаёт электростатические разряды, но не может поддерживать постоянный ток, необходимый для горения лампочки. Это источник потенциала, а не энергии в привычном нам смысле.
▪️5. Практическое применение: не только шоу.
Помимо учебных демонстраций, большие генераторы Ван де Граафа используются как ускорители частиц! Они разгоняют заряженные частицы (ионы) для ядерных исследований и даже для лечения некоторых форм рака (протонной терапии).
▪️6. Закон сохранения заряда в действии.
Генератор не создаёт заряд из ничего, он разделяет его. Электроны «снимаются» с одного ролика (который приобретает положительный заряд) и переносятся на сферу (отрицательный заряд). Вся система в целом остается электронейтральной, что является яркой демонстрацией фундаментального закона сохранения заряда.
▪️7. Почему именно сфера?
Форма верхнего электрода выбрана не просто так. Сфера обладает самой маленькой кривизной поверхности. Чем больше кривизна (остриё, угол), тем выше напряжённость электрического поля и интенсивнее утечка заряда в воздух (через коронный разряд). Сфера позволяет накопить максимальный заряд до пробоя.
▪️8. Напряжённость поля и «стекание» заряда.
Когда вы подносите руку к сфере, между вами возникает гигантская напряжённость электрического поля. Она достигает ~30 кВ/см в сухом воздухе — это предел пробоя! Электроны с ваших волос буквально «выталкиваются» этим полем, заставляя их отталкиваться друг от друга и подниматься. Ваши волосы — это мини-проводники, пытающиеся максимально удалиться друг от друга под действием кулоновских сил.
▪️9. Аналогия с водонапорной башней.
Представьте: напряжение — это высота воды в башне (напор), а заряд — это объем воды. Генератор Ван де Граафа — это башня с очень высоким напором, но с крошечным стаканчиком воды внутри. Он может создать мощную, но очень короткую струю (разряд). Розетка — это, наоборот, огромный резервуар с низким напором, но способный питать приборы долгое время.
▪️10. Связь с ускорителями частиц.
Как он разгоняет частицы? Внутри большой установки создаётся высокий положительный потенциал. Отрицательно заряженный ион (например, H⁻) инжектируется в ускорительную трубку и притягивается к положительной сфере. Набрав колоссальную скорость, он пролетает через сферу, где мощное электрическое поле срывает с него электроны, превращая в положительный протон (H⁺), который продолжает полёт к мишени. Это чистая энергия, преобразованная из электростатического потенциала. #задачи #физика #электродинамика #магнетизм #опыты #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63❤34🔥20⚡17✍2❤🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
Классический демонстрационный опыт в электротехнике: вторичную обмотку высоковольтного трансформатора (например, катушки Румкорфа или Теслы, или просто повышающий трансформатор) намеренно замыкают. В результате пробоя воздуха между проводниками возникает устойчивый электрический разряд — дуга. Рассмотрим физику процесса:
1. Электрическая дуга — это не просто искра или горячий воздух. Это низкотемпературная плазма (четвертое состояние вещества), с температурой 5000–15000 °C. Проводимость дугового столба близка к проводимости металлов.
2. Дуга горит не только за счет внешнего напряжения. Ключевую роль играет термоэлектронная эмиссия: катод разогревается до таких температур, что начинает «испускать» электроны, поддерживая разряд. Кроме того, происходит ударная ионизация: электроны, ускоряясь в поле, выбивают из атомов газа другие электроны, создавая новые ионы и электроны (лавинообразный процесс).
3. Дуга является мощным источником инфразвука. Быстрое тепловое расширение воздуха в канале разряда создает ударные волны, которые человеческое ухо воспринимает как характерный гул или треск.
4. Под действием магнитных полей и конвекционных потоков плазма в дуге закручивается, формируя устойчивые вихревые структуры, что можно наблюдать при высокоскоростной съемке.
Первым, кто не просто наблюдал, а провел систематические эксперименты с электрической дугой и описал ее как физическое явление, был русский ученый Василий Владимирович Петров.
▪️ В 1802 году, за 8 лет до опытов сэра Хэмфри Дэви, В. В. Петров, собрав крупнейшую для того времени гальваническую батарею (2100 медных и цинковых элементов), получил между угольными электродами «весьма яркую беловатую дугу или пламя».
▪️ В своем фундаментальном труде «Известие о гальвани-вольтовских опытах» он не только подробно описал дугу, но и предсказал ее практическое применение для плавки металлов, освещения и восстановления оксидов.
▪️ Несмотря на приоритет Петрова, в западной научной литературе открытие часто приписывается Дэви (1808-1810 гг.), чьи работы получили более широкую известность.
Таким образом, электрическая дуга — это не просто эффектный разряд, а сложное физическое явление на стыке физики плазмы, термодинамики и акустики, впервые изученное в начале XIX века. #задачи #физика #электродинамика #магнетизм #опыты #physics #эксперименты
⚡️Задачка для наших физиков. Три вопроса для тех, кто хочет проверить своё понимание электродинамики
Демонстрация опыта: Генератор Ван де Граафа.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍54🔥23❤20⚡6🤔2
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
1. Заряд конденсатора: Источник высокого напряжения (обычно через трансформатор) заряжает первичный конденсатор.
2. Искровой разряд: Когда напряжение на конденсаторе достигает порога пробоя, он разряжается через искровой промежуток на первичную катушку. Эта катушка состоит из нескольких витков толстого провода.
3. Создание колебаний: Разряд создает в первичном контуре (конденсатор + первичная катушка) высокочастотные электромагнитные колебания.
4. Резонанс и трансформация: Вторичная катушка (тысячи витков тонкого провода) настроена в резонанс с первичным контуром. За счет электромагнитной индукции и явления резонанса во вторичной обмотке генерируется ток чрезвычайно высокого напряжения.
5. Выходной разряд: Напряжение на верхнем терминале (тороиде или сфере) достигает значений, при которых воздух ионизируется, и возникают характерные стримеры и коронные разряды.
▪️ Первоначальная цель. Тесла создавал катушку не для демонстраций, а как часть своей глобальной системы для беспроводной передачи энергии и информации на большие расстояния.
▪️ Патент на освещение. Одним из первых практических применений была демонстрация беспроводных газоразрядных ламп. Тесла держал их рядом с работающей катушой, и они светились, получая энергию через воздух.
▪️ Масштабы экспериментов. В своей лаборатории в Колорадо-Спрингс Тесла построил гигантскую катушку диаметром более 15 метров. Генерируемые ею искусственные молнии достигали длины 40 метров, а их раскаты были слышны за 24 километра.
▪️ Связь с рентгеновскими лучами. Катушка Тесла стала одним из первых источников для генерации рентгеновских лучей, что опередило официальное открытие Вильгельма Рентгена. Сам Тесла проводил такие эксперименты, но не опубликовал их вовремя.
▪️ Медицинный миф. В начале XX века катушки Теслы и подобные им аппараты ошибочно использовались в псевдомедицинских целях для «оздоровления» организма высокочастотными токами (явление, известное как «витализация»).
#электричество #физика #электродинамика #магнетизм #опыты #physics #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥47❤43👍9⚡6🌚3