Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Игла, в ушко которой заправлена нить, совершает возвратно-поступательное движение. В результате:
1. Игла прокалывает материал, проводит через него верхнюю нить и создаёт у ушка иглы петлю.
2. При движении иглы вниз верхняя кромка ушка натягивает нитку, и обе её ветви напрягаются.
3. Когда игла начинает подъём при обратном ходе, натяжение ниток ослабевает, и обе ниточные ветви медленно расходятся в стороны, образуя петлю грушевидной формы.
Челнок обеспечивает захват петли и её обвод вокруг шпульки с нижней нитью. Процесс работы:
1. Формирование петли: когда игла опускается в ткань, она проводит с собой нить, челнок захватывает эту нить и образует петлю.
2. Проход нижней нити: через сформированную петлю проходит нить из нижней катушки (шпульки), лежащей в челноке.
3. Затягивание стежка: когда игла поднимается обратно, петля затягивается, и нить с шпульки закрепляется, формируя стежок.
#топология #видеоуроки #лекции #геометрия #физика #математика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍82🔥29❤25🤔4🤯4❤🔥2🤩1🗿1
Media is too big
VIEW IN TELEGRAM
Детская научно – познавательная картина о древней математической загадке, названной «квадратура круга», о дальнейшей истории этой математической задачи. Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки (без шкалы с делениями) квадрата, равновеликого по площади данному кругу. Наряду с трисекцией угла и удвоением куба, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.
Квадратура круга — задача, заключающаяся в нахождении способа построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу.
➰ О свойствах параболы ➿
Наш канал с научно-техническими фильмами: 🎥 Учебные фильмы 🎞 @maths_lib
#физика #математика #моделирование #опыты #эксперименты #physics #видеоуроки #научные_фильмы #math #geometry
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45❤34❤🔥13🔥9🤩1🫡1
Ионный двигатель — тип электрического ракетного двигателя, принцип работы которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.
✅ Достоинством этого типа двигателей является малый расход топлива и продолжительное время функционирования (максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трёх лет).
❌ Недостатком ионного двигателя является ничтожная по сравнению с химическими двигателями тяга.
По сравнению с двигателями с ускорением в магнитном слое ионный двигатель обладает большим энергопотреблением при равном уровне тяги. Ионные двигатели используют повышенные напряжения, обладают более сложной схемой и конструкцией, что усложняет решение задачи обеспечения высокой надёжности и электрической прочности двигателя.
Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей (вплоть до 210 км/с, по сравнению с 3—4,5 км/с у химических ракетных двигателей). Таким образом, в ионном двигателе можно достичь очень большого удельного импульса. Это позволяет значительно уменьшить расход реактивной массы ионизированного газа по сравнению с расходом реактивной массы в химических ракетах, но требует больших затрат энергии.
В существующих реализациях ионного двигателя в качестве источника энергии, необходимой для ионизации топлива, используются солнечные батареи.
Рабочим телом, как правило, является ионизированный инертный газ (аргон, ксенон и т. п.), но иногда и ртуть. В ионизатор подаётся топливо, которое само по себе нейтрально, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом, в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные ионы притягиваются к системе извлечения, состоящей из двух или трёх сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 Вольт на внутренней против -225 Вольт на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку, выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается, во-первых, для того, чтобы корпус корабля оставался нейтрально заряженным, а во-вторых, чтобы ионы, «нейтрализованные» таким образом, не притягивались обратно к кораблю. #физика #электродинамика #наука #physics #science #лекции #видеоуроки #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍56❤41❤🔥11🔥8🤔5⚡3
Media is too big
VIEW IN TELEGRAM
▪️ Сложение колебаний динамика и прямолинейного потока вода, в результате которого получается бегущая волна около синусоидальной формы. Однако волна в некоторые моменты времени как будто замирает в воздухе. Связано это со стробоскопическим эффектом: частота камеры иногда точно совпадает с частотой колебаний динамика, в результате подвижная струя кажется неподвижной. Стробоскопический эффект при съёмке заключается в иллюзии неподвижности быстро движущихся тел.
▪️Неодимовый магнит может использоваться для сбора железной стружки благодаря высокой силе притяжения, которая характерна для этого типа магнитов. Стружка, особенно железосодержащая, притягивается к магниту, что позволяет улавливать её в разных областях. Магнит притягивает ферромагнитные частицы (железо, сталь). Цветные металлы и неметаллические загрязнения остаются незамеченными. Для очистки моторного масла от мелкой металлической стружки, которая образуется из-за трения деталей двигателя. Магнит размещают снаружи корпуса масляного фильтра, в области прохождения масла. Стружка притягивается и удерживается, предотвращая её дальнейшее циркулирование по системе.
▪️Уменьшение объема тела тесно связано с уменьшением его момента инерции J = (2/5) × m × r² (для сферы). Закон сохранения момента импульса гласит, что если момент внешних сил, действующих на механическую систему относительно центра оси, равен нулю, то момент импульса системы относительно этого центра с течением времени не изменяется. Если момент импульса L = J ×ω сохраняется, то при уменьшении момента инерции J (сжатие проволочного каркаса), частота вращения будет увеличиваться.
▪️ Рёбра жёсткости (складки) способны сделать бумагу твёрдой — они придают листу прочность, который не выдерживает в форме ровного прямого листа. Это происходит, если лист сложить так, чтобы получились рёбра жёсткости. Например: Сложить лист «гармошкой» — создаёт большое количество рёбер жёсткости. Рёбра жёсткости направляют деформацию «по сложному» пути. Например, если лист согнули под углом 90 градусов, напряжения, которые возникают в материале, распространяются не в продольной плоскости, а в поперечной. В этой плоскости согнуть лист сложнее, так как нужно разорвать межмолекулярные связи.
▪️Гироскопический эффект и прецессия — понятия, связанные с поведением вращающихся объектов, в частности гироскопов. Эти термины объясняют, как ось вращения гироскопа сохраняет направление в пространстве, а при внешнем воздействии ось не меняет направление сразу, а начинает плавно описывать движение. Гироскопический эффект — это способность быстро вращающегося тела удерживать своё положение в пространстве в плоскости своего вращения. Прецессия — это движение оси вращения гироскопа вокруг другой оси. Сила тяжести действует на гироскоп, создавая момент силы, который пытается заставить его опрокинуться. Однако гироскоп прецессирует, и ось его вращения остаётся направленной вверх. Если ось быстро вращающегося гироскопа слегка отклонить от вертикали, то она начнёт прецессировать вокруг вертикального положения, то есть совершать вращательное движение по поверхности конуса.
▪️Когда один шар сталкивается с цепочкой из нескольких одинаковых шаров, налетающий шар обменивается скоростью со вторым шаром, второй — с третьим и так далее. В результате все шары, кроме последнего, будут находиться в покое, а последний шар отскочит ровно с той же самой скоростью, с которой двигался налетающий шар. Это происходит благодаря закону сохранения импульса, согласно которому суммарный импульс системы тел до взаимодействия равен суммарному импульсу этой системы тел после взаимодействия.
#физика #physics #science #видеоуроки #наука #опыты #эксперименты #механика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍60🔥20❤16🤯1🤩1🗿1👾1
Media is too big
VIEW IN TELEGRAM
Самой яркой и наглядной демонстрацией эффекта является резка (фактически — откалывание) стекла обыкновенными ножницами в воде. Таким образом получится вырезать из стекла практически любую фигуру. В физикеэффект Ребиндера — это снижение твёрдости и пластичности материала, в частности металлов, под воздействием поверхностно-активной плёнки. Эффект назван в честь советского учёного Петра Александровича Ребиндера, который впервые описал этот эффект в 1928 году. Предлагаемое объяснение этого эффекта заключается в разрушении поверхностных оксидных плёнок и снижении поверхностной энергии с помощью поверхностно-активных веществ. Этот эффект особенно важен при механической обработке, поскольку смазочные материалы снижают силу резания.
Эффект Ребиндера
#физика #адсорбция #physics #science #химия #видеоуроки #наука #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍96🔥35❤14🤔5❤🔥4✍2🤯2😱2
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
🔥52👍28❤17❤🔥2🆒2👏1🤯1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
И вот мы, люди 21 века, смотрим на эту семидесятилетнюю технологию, как на чудо
✨ Как сделать сварочный аппарат из карандаша и лезвия
Какой флюс для пайки самый лучший на сегодняшний день?
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62❤32🔥24🆒2🗿1
💫 Ричард Фейнман: 7 лекций о связи математики и физики // Характер физических законов
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
❤80👍37❤🔥6🔥4⚡1😍1
Media is too big
VIEW IN TELEGRAM
🧊 Интересный опыт: Лёд под проволокой
Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?
Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки
💡 Physics.Math.Code // @physics_lib
Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?
Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки
💡 Physics.Math.Code // @physics_lib
🔥45👍32❤11🤯2😱2🤩2❤🔥1
➰ Брахистохрона (от греч. βράχιστος «кратчайший» + χρόνος «время») — кривая скорейшего спуска. Задача о её нахождении была поставлена в июне 1696 года Иоганном Бернулли следующим образом:
Решением задачи о брахистохроне является дуга циклоиды с горизонтальным основанием, точка возврата которой находится в точке A, или иными словами, имеющая вертикальную касательную в точке A. Примечательно, что время спуска до нижней точки не зависит от расположения начальной точки на дуге циклоиды.
И да — это не дуга окружности, как думал ранее пытавшийся решить похожую задачу Галилео Галилей. Но что же могли сделать математики 17 века? Им было трудно. Изначально Бернулли предполагал, что решение найдется за полгода, однако затем был вынужден продлить соревнование еще на полтора. Первым на сцену вышел Исаак Ньютон, решивший задачу за одну ночь (он просто узнал про неё больше, чем через полгода). Посмотрев на анонимное решение Иоганн Бернулли воскликнул: "Узнаю льва по следу его когтя". В методе Ньютона используются чисто геометрические выводы, которые, кстати, окончательно не были строго обоснованы. Но в одном Великий был прав: кривая наискорейшего спуска является перевернутой циклоидой. #математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry #вариационное_исчисление #интегральное_исчисление
💡 Physics.Math.Code // @physics_lib
Среди плоских кривых, соединяющих две данные точки A и B, лежащих в одной вертикальной плоскости ( B ниже A), найти ту, двигаясь по которой под действием только силы тяжести, сонаправленной отрицательной полуоси OY, материальная точка из A достигнет B за кратчайшее время.
Решением задачи о брахистохроне является дуга циклоиды с горизонтальным основанием, точка возврата которой находится в точке A, или иными словами, имеющая вертикальную касательную в точке A. Примечательно, что время спуска до нижней точки не зависит от расположения начальной точки на дуге циклоиды.
И да — это не дуга окружности, как думал ранее пытавшийся решить похожую задачу Галилео Галилей. Но что же могли сделать математики 17 века? Им было трудно. Изначально Бернулли предполагал, что решение найдется за полгода, однако затем был вынужден продлить соревнование еще на полтора. Первым на сцену вышел Исаак Ньютон, решивший задачу за одну ночь (он просто узнал про неё больше, чем через полгода). Посмотрев на анонимное решение Иоганн Бернулли воскликнул: "Узнаю льва по следу его когтя". В методе Ньютона используются чисто геометрические выводы, которые, кстати, окончательно не были строго обоснованы. Но в одном Великий был прав: кривая наискорейшего спуска является перевернутой циклоидой. #математика #опыты #геометрия #gif #анимация #видеоуроки #math #geometry #вариационное_исчисление #интегральное_исчисление
💡 Physics.Math.Code // @physics_lib
👍41❤22🔥7🤯2