Physics.Math.Code
143K subscribers
5.2K photos
2.05K videos
5.81K files
4.45K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
📚 Физика (Американский курс физики для средней школы) [1973-1974] Комитет содействия изучения физики при Массачусетском технологическом институте
Переводчик: Ахматов А.С.

💾 Скачать книги

Конечно, учебник не свободен от ряда недостатков и не пригоден для введения его в советской средней школе по его методологической основе, недостаточности используемого математического аппарата и многим другим признакам. Тем не менее по богатству материала, оригинальности многих замыслов и по мастерству изложения ряда вопросов книга заслуживает большого внимания со стороны наших педагогов и учащихся. Именно эти соображения послужили основанием для перевода на русский язык первого издания учебника*). #физика #physics #подборка_книг #учебники #наука

☕️ Для тех, кто захочет задонать на кофе: ВТБ: +79616572047 (СБП) ЮMoney: 410012169999048

💡 Physics.Math.Code // @physics_lib
👍3919🔥10🤩1🙏1😍1🤗1
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Что будет если на электроды, между которыми проскакивает дуга (высокая напряжения) прикрутить мощные неодимовые магниты? Будет ли плазма реагировать? 🧲

Плазма дуги будет очень сильно реагировать на мощные неодимовые магниты. Дуга начнет двигаться, изгибаться и даже вращаться под действием магнитного поля. Плазма электрической дуги — это раскаленный ионизированный газ, состоящий из положительных ионов и отрицательных электронов. Это, по сути, проводник с током.

На любой движущийся заряженный частицы (а электроны в токе как раз движутся) действует сила Лоренца. Ее направление зависит от направления тока и направления магнитного поля (определяется по правилу левой руки).

Что происходит в дуге:

1. Сила, действующая на носители тока: Магнитное поле магнитов действует на движущиеся электроны (основные носители тока в дуге) с определенной силой, перпендикулярной и их движению, и направлению поля.

2. Смещение и растяжение дуги: Поскольку сила Лоренца действует на всю дугу, она начинает "толкать" плазменный шнур. Дуга перестает быть прямой кратчайшей линией между электродами и изгибается, вытягиваясь в сторону, перпендикулярную линиям магнитного поля.

3. Эффект "магнитного дутья": Это классический технический прием для гашения электрической дуги в высоковольтных выключателях. Мощные магниты располагают так, чтобы сила Лоренца растягивала дугу, заставляя ее двигаться вдоль дугогасительной камеры. При движении дуга контактирует с холодными стенками камеры, интенсивно охлаждается, и ее сопротивление растет, пока она не погаснет.

Если прикрепить мощные неодимовые магниты с противоположными полюсами по бокам от дуги, вы увидите следующие эффекты:

▪️ Отклонение дуги: Дуга будет не просто прыгать между электродами, а будет изогнутой, похожей на арку или букву "С".
▪️ Движение дуги: Если расположить магниты особым образом (например, создав поле, перпендикулярное плоскости дуги), можно заставить дугу быстро вращаться вокруг электродов. Это выглядит как яркое, светящееся "огненное колесо".
▪️ Удлинение и охлаждение: Растянутая дуга становится длиннее, что приводит к ее охлаждению. Она может стать более бледной и менее стабильной.
▪️ Ускоренное гашение: Если источник питания не может поддерживать растянутую и охлажденную дугу, она может погаснуть быстрее, чем без магнитов.

⚡️Практическое применение и предостережения:

1. Плазменные резаки и сварочные аппараты: В некоторых современных плазменных резаках используются магнитные системы для стабилизации и вращения плазменной струи. Это повышает качество и равномерность реза.
2. Исследования термоядерного синтеза (Токамак): Это самый масштабный пример. Гигантские сверхпроводящие магниты используются для удержания и стабилизации плазмы, не давая ей коснуться стенок реактора.
3. Высоковольтные выключатели: Как уже упоминалось, для принудительного гашения дуги.

Если вы прикрутите мощные неодимовые магниты к электродам с дугой, вы не просто увидите реакцию плазмы — вы станете свидетелем фундаментального физического явления, которое лежит в основе многих современных технологий. Дуга будет активно изгибаться и двигаться под действием магнитного поля, демонстрируя прямую связь между электричеством и магнетизмом. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥40👍20117🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Диамагнитная беговая дорожка

Набор
из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики

💡 Physics.Math.Code // @physics_lib
👍5918🔥131😍1
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Сварка трением, иначе фрикционная сварка. Несколько патентов на эту тему было ещё в 20е годы в Великобритании, СССР и Веймарской республике. Первое детальное описание и эксперименты по промышленному применению: СССР 1956 год. С начала 60х метод широко внедряется в Европе СССР и США. В дальнейшем были разработано несколько методов фрикционной сварки. Применяется в автомобилестроении и авиации, что свидетельствует о более высокой надёжности, в сравнении с другими методами, в том числе это связано с перемешиванием материалов и отсутствием перегрева, то есть отсутствием шва, а следовательно и его дефектов.

И вот мы, люди 21 века, смотрим на эту семидесятилетнюю технологию, как на чудо

Как сделать сварочный аппарат из карандаша и лезвия

Какой флюс для пайки самый лучший на сегодняшний день?

🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию

🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру

🔥 Сварка под слоем флюса

Мартенсит

⛓️‍💥 Какие только технологии не применяли в СССР

⚡️ Большие токи в нескольких витках провода вызывают существенное магнитное поле.

💥 Лазерная сварка с разной формой луча

🔥 Spot-сварка

💥 Импульсная аргонодуговая сварка

💥 Электросварка и плавление электрода 💫

#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6132🔥23🆒2🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
💪 Не мускулами, а умом: как гидравлика умножает наши силы

Когда нужно поднять многоэтажный автобус для замены колеса или плавно опустить шасси огромного самолета, на помощь приходит она — гидравлика.
Принцип прост до гениальности: сила, приложенная к одному участку жидкости, передается без изменения в любую другую точку. Вся хитрость — в разной площади поршней.

Представьте:
▪️ У вас есть два соединенных шприца — маленький (1 см²) и большой (100 см²).
▪️ Если надавить на малый поршень с силой всего в 1 кг, то согласно закону Паскаля, давление в жидкости распространится повсюду.
▪️ На большой поршень это же давление будет давить с гораздо большей силой: Сила = Давление × Площадь. В нашем примере — уже 100 кг!

Именно так работают домкраты, прессы и тормозные системы. Мы вкладываем маленькое усилие, а на выходе получаем огромное. Мы не создаем энергию из ниоткуда, мы просто меняем соотношение сил, жертвуя расстоянием (малый поршень надо прожать много раз, чтобы большой поднялся немного).

🔍 Исторический факт: А знаете ли вы, что фундамент этой технологии заложил выдающийся французский ученый Блез Паскаль? В 1648 году он провел эффектный эксперимент, впоследствии названный «Паскалевой бочкой».

Он вставил в закрытую бочку, наполненную водой, очень длинную и тонкую вертикальную трубку. Поднявшись на балкон, он влил в эту трубку всего несколько кружек воды. Давление, созданное маленьким столбом жидкости в узкой трубке, передалось по всем направлениям и преумножилось так, что мощные дубовые доски бочки не выдержали и она треснула. Этот наглядный опыт блестяще подтвердил его теорию, а сегодня его именем названа единица измерения давления.
Так что, в следующий раз, видя работу подъемного крана, вспомните о силе воды и гениальном французе XVII века! 🚀 #гидравлика #физика #историянауки #технологии #physics #инженерия #science

💦Гидротаранный насос (или просто гидротаран)

💧 Гидростатический парадокс или парадокс Паскаля

😠 Принцип работы гидравлического пресса

⚙️ Принцип работы гидравлической машины

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍101🔥3733❤‍🔥2🤯2🤩2🤨2😱1
💫 Ричард Фейнман: 7 лекций о связи математики и физики // Характер физических законов

Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука

💡 Physics.Math.Code // @physics_lib
79👍37❤‍🔥6🔥41😍1
Media is too big
VIEW IN TELEGRAM
🧊 Интересный опыт: Лёд под проволокой

Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?

Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки

💡 Physics.Math.Code // @physics_lib
🔥43👍3111🤯2😱2❤‍🔥1🤩1
🔔 Оксфордский электрический звонок: самый долгий научный эксперимент в мире, длящийся с 1840 года

В коридоре Оксфордского университета стоит невзрачный на вид прибор, который тихо звонит уже почти 185 лет. Этот эксперимент начался в 1840 году, и с тех пор Оксфордский электрический звонок (также известный как Clarendon Dry Pile) работает практически без остановок, став символом невероятной долговечности и загадки для научного сообщества.

Устройство выглядит просто: два латунных колокольчика, между которыми колеблется металлический шарик-маятник диаметром около 4 мм. Под колокольчиками скрыта сухая батарея — так называемый «замбониев столб», изобретенный итальянским физиком Джузеппе Замбони в 1812 году.

Батарея создает высокое напряжение (предположительно около 2 кВ). Когда маятник касается одного колокольчика, он заряжается и отталкивается от него, притягиваясь к противоположному. При касании второго колокольчика процесс повторяется. Шарик колеблется с частотой 2 Гц, что приводит к непрерывному звону.

Ключевая особенность — чрезвычайно низкое энергопотребление. Батарея отдает крошечный ток, которого хватило на века работы. Сама батарея герметично залита серой, что защищает ее от влаги и окисления.

Точный химический состав батареи остается неизвестным. Ученые предполагают, что это усовершенствованный вариант батареи Замбони, состоящий из тысяч чередующихся слоев: металлической фольги (возможно, цинк) и бумажных дисков, пропитанных электролитом (например, диоксидом марганца).

Однако вскрыть батарею для изучения невозможно — это прервет уникальный эксперимент. Профессор Роберт Уокер, приобретший звонок в 1840 году, не оставил записей о ее устройстве, и тайна остается нераскрытой.

В 1984 году звонок был внесен в Книгу рекордов Гиннесса как «самый долговечный источник энергии». По подсчетам, он совершил уже более 10 миллиардов ударов.

Звонок демонстрирует принципы электростатики и пределы энергоэффективности. Его используют в дискуссиях о втором законе термодинамики, хотя сам он не является «вечным двигателем» — работа закончится, когда батарея исчерпает ресурс или износятся механические части.

Можно ли услышать звонок сегодня — да. Звонок до сих пор находится в Кларендонской лаборатории Оксфордского университета, за двумя стеклянными панелями (они приглушают звук). Услышать его могут студенты, ученые и туристы, но из-за тихого звука требуется прислушаться. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
94🔥67👍39🤔115💯3🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Точки пересечения кругов на воде движутся по гиперболе

Кто сможет доказать данный факт математически?

#математика #math #maths #mathematics #геометрия #опыты #физика #physics

💡 Physics.Math.Code // @physics_lib
🔥64👍30103🤯3🥰1
💡 «Эффект Паули» — почему известному учёному запрещали появляться в лабораториях

Эффект назван по фамилии швейцарского физика Вольфганга Эрнста Паули, который был стопроцентным теоретиком. Он работал в области физики элементарных частиц и стал лауреатом Нобелевской премии 1945 года. Большинству из нас он известен благодаря "принципу Паули". Но прошу не путать "принцип Паули" с "эффектом Паули".

Принцип Паули — это квантово-механический принцип, который гласит, что два или более идентичных фермиона не могут одновременно находиться в одном и том же квантовом состоянии в квантовой системе. Но в статье речь не об этом, так что не пугайтесь.

Эффект же Паули заключается в том, что при появлении теоретика рядом с экспериментальной установкой результаты могут получиться неверными или эксперимент не удастся вовсе. Этот эффект не имеет никакого теоретического подтверждения и обоснования, но неоднократно наблюдался на практике разными людьми.

Известно, что Паули был стопроцентным теоретиком и при его появлении в лабораториях и на экспериментах, почти каждый раз что-то шло не так. Хотите верьте, хотите нет, но даже его друг Нобелевский лауреат Отто Штерн запрещал Паули находится в лаборатории во время проведения экспериментов.

Всё началось с того, что коллеги Паули начали замечать, что как только Паули входил в комнату, где проводились эксперименты, приборы тут же начинали показывать неверные значения и "сходили с ума". Сначала это называли "эффектом Паули" только те, кто непосредственно работал с Паули всё время. Но вскоре "слава" о Нобелевском лауреате вышла далеко за пределы его личных знакомств.

🕰 Эксперимент с часами: Проверить этот эффект взялись студенты Паули. Они соединили настенные часы с дверью через реле таким образом, что, когда открывается дверь, часы замедляли свой ход. Ничего не подозревающий Паули, зашёл в аудиторию, провел, как и планировал лекцию, а время сверял по тем самым часам, с которыми студенты связали реле. Как оказалось потом, часы так и не замедлили ход, вышло из строя реле.

Позже студенты сделали другой механизм. Они связали дверь с люстрой. Когда дверь открывалась, люстра должна была падать. Но когда дверь открыл Паули, ничего не произошло. В механизме что-то сломалось. Сам Паули увидел сложную конструкцию и сказал: "Как я понимаю, вы только что доказали эффект Паули".

🚂 Странный случай на железной дороге: Но самый невероятный случай произошел, когда Паули ехал из Цюриха в Копенгаген навестить и обсудить последние новости физики со своим небезызвестными приятелем Нобелевским лауреатом Нильсом Бором. Известный физик и ещё один Нобелевский лауреат Джеймс Франк работал в лаборатории в городке Геттинген. В Геттингенский университет как раз привезли самое современное и дорогое оборудование от передовых производителей для проведения сложных экспериментов по изучению атомов. Но когда Франк начал проводить эксперимент, что-то пошло не так и установка вышла из строя. Время происшествия было точно известно и, как позже выяснилось, как раз в эти минуты поезд, на котором ехал Паули, сделал короткую семиминутную остановку на станции в Геттингене.

Как я уже сказал, доказанных подтверждений эффекта или того, что Паули каким-то образом влиял на экспериментальные установки, нет. Возможно, всё это не более чем совпадения и стечения обстоятельств. Но и сейчас находятся люди, которые уверены, что встречались с такими людьми или сами являются ими. #физика #physics #science #наука

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥13356😎29👍16🤓9🌚6🤷‍♂33🤯2👻21