Physics.Math.Code
150K subscribers
5.23K photos
2.21K videos
5.82K files
4.58K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

Обратная связь: @physicist_i
Download Telegram
Media is too big
VIEW IN TELEGRAM
🔥 Заводим мотор! Почему маленький ДВС для RC-машинки — это технологическое чудо?

Все мы видели мощные радиоуправляемые машинки с ДВС, которые ревут как настоящие звери. Казалось бы, возьми большой мотор, уменьши его — и готово. Но на деле создать такой «малютку» невероятно сложно. Вот почему ⬇️

▪️ Факт 1: В мире маленьких моторов трение — главный враг.

Представьте: при уменьшении размера мотора в 10 раз его объем (и мощность) уменьшаются в 1000 раз (!), а площадь поверхностей, создающих трение, — только в 100 раз. Это значит, что в относительном выражении трение в маленьком моторе в 10 раз значимее, чем в большом. Из-за этого крошечные двигатели без тщательной обработки могут просто не провернуться под нагрузкой.

▪️ Факт 2: Им не хватает инерции.

Массивный маховик большого мотора помогает поршню проходить «мертвые точки». В микро-ДВС маховик легкий, и ему не хватает инерции. Поэтому такие моторы невероятно сложно завести «с толкача» — нужна специальная система заводки (обычно роторная, с пружиной).

▪️ Факт 3: Скорость — их единственный путь к мощности.

Поскольку увеличить рабочий объем нельзя, инженеры выжимают мощность другим способом — оборотами. Типичный RC-ДВС легко раскручивается до 30 000–40 000 об/мин. Для сравнения, мотор спортивного автомобиля редко превышает 10 000 об/мин. Эта сумасшедшая скорость требует идеальной балансировки и создает чудовищные нагрузки на детали.

▪️ Факт 4: У них нет свечи зажигания (в привычном виде).

Во многих маленьких калильных двигателях нет электрической системы зажигания! Вместо нее в камере сгорания стоит калильная свеча — с платиновой нитью накаливания. Сначала ее разогревают от внешнего источника, а дальше она поддерживает температуру за счет циклов сгорания. Топливо воспламеняется от контакта с раскаленной свечой. Просто и гениально!

▪️ Факт 5: Термодинамика сходит с ума.

В маленьком объеме соотношение площади к объему растет. Камера сгорания быстро отдает тепло, что мешает эффективному сгоранию топлива. А из-за миниатюрных размеров сложно сделать эффективное охлаждение (обычно это просто алюминиевый радиатор, обдуваемый воздухом). Перегрев — постоянная головная боль.

🔥Вывод: Сделать маленький мощный ДВС — это не просто масштабировать чертеж. Это постоянная борьба с законами физики, которые не любят миниатюризацию. Каждый такой мотор — это шедевр инженерной мысли, где точность изготовления измеряется в микронах, а за мощность приходится платить умопомрачительными оборотами.

А вы знали о таких сложностях? #ДВС #радиоуправление #физика #механика #инженерия #RCмодели #технологии

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍97🔥30🤯1715❤‍🔥2🤩21😍1
This media is not supported in your browser
VIEW IN TELEGRAM
🎈 Резиновый шарик в тепловизоре 🔥

Что же происходит в резине, когда мы её растягиваем? В обычном состоянии цепочки полимера находятся в слегка изогнутом, свернутом состоянии. Это объясняется тем, что звенья и атомы не закреплены жёстко как на каком-то каркасе или проволоке – происходит их тепловое движение и конформация полимера, то есть его пространственная форма и положение цепочек непрерывно меняются. Более того, сами цепи способны соударяться друг о друга. Когда мы начинаем растягивать резину, цепочки начинают вытягиваться вдоль одной линии. А, значит, число соударений цепочек друг о друга увеличивается. Что приводит к росту скорости молекул и увеличению внутренней энергии – резина нагревается. Как только мы прекращаем растягивать резину, тепловое движение начинает стремиться вновь «запутать» цепочки, позволить им стать изогнутыми и сократить их длину. В результате резина сжимается. Такие «расслабленные» цепочки, с которых сняли приложенное напряжение, наоборот будут терять энергию: из-за этого резина будет охлаждаться.

Чтобы убедиться в этом, вы можете проделать опыт самостоятельно: вам нужно всего лишь приложить, например, резиновую ленту (подойдут даже канцелярские резинки) к губам в момент растяжения и затем отпустить её, позволив сжаться. Таким образом вы сможете почувствовать разницу в температуре растягиваемого участка.

💥 Зная молекулярный механизм, как работают резиновые ленты, можно пользоваться таким лайфхаком: нагретая резина может поднять больший груз! При большей температуре натянутые цепочки будут подвергаться более сильной бомбардировке соседних молекул, а значит, будут стремиться сильнее сжаться обратно. Поэтому в целом резиновую ленту будет сложнее растянуть и ее грузоподъемность увеличится! #физика #механика #видеоуроки #science #термодинамика #МКТ #physics #опыты #эксперименты

💡 Physics.Math.Code // @physics_lib
44👍28🔥21🤯5🌚4😱3🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Сравнение скорости движения пули и скорости разрушения стекла

Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics

📚 Механика разрушений [12 книг]

⛓️ ⚙️ Механика разрушения материалов (видео)

💡 Physics.Math.Code // @physics_lib
4👍71🔥3211🤯52
This media is not supported in your browser
VIEW IN TELEGRAM
Можно ли поставить дом на шары, чтобы спасти его от землетрясения? 🏠

Почему простые шары не сработают? Представьте дом на четырех бильярдных шарах. Проблемы:
→ Они могут выкатиться в сторону.
→ Давление в точке контакта огромно, и шар просто продавит пол.
→ Любой порыв ветра заставит дом качаться.

А что тогда сработает? Инженеры давно разработали системы, которые отделяют здание от вибраций при землетрясениях. Это как поставить дом на "амортизаторы".

1. Сейсмические изоляторы (Сейсмоизоляция):
Маятниковые изоляторы: Представьте не шар, а огромную "линзу", внутри которой стальной шар качается по специальной чаше. При землетрясении здание плавно "раскачивается" на этой чаше, как маятник, гася энергию.
Слинговые изоляторы: Здесь используются опорные конструкции, работающие на растяжение, которые позволяют зданию качаться в определенных пределах.
Рельсовые системы: Здание устанавливается на специальные рельсы, позволяя ему смещаться при подземных толчках.

2. Сейсмические гасители (Демпферы). Если изоляторы — это "подвеска", то демпферы — это "тормоза". Их ставят внутри здания, чтобы поглощать энергию колебаний. Бывают:
Вязкостные: Как гигантские амортизаторы в автомобиле.
Массовые (динамические гасители): Огромный шар или маятник на верхних этажах, который раскачивается в противофазе основным колебаниям и гасит их. Знаменитый Тайбэй 101 использует такой 660-тонный шар!

3. Сейсмические компенсаторы (Тросовые системы)
Системы стальных тросов и растяжек, которые перераспределяют нагрузку и не дают зданию сложиться, как карточный домик.

Идея "катящейся опоры" — гениальна в своей основе, и инженеры воплотили ее в жизнь, создав сложные и надежные системы сейсмической изоляции. Благодаря им современные здания в сейсмоопасных зонах могут пережить даже очень сильные толчки, сохранив жизни людей и свою целостность. #землетрясение #строительство #инженерия #технологии #геология #архитектура #механика #разрушения #колебания #волны #физика #physics #эксперименты

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍6024🔥22😱3🗿2❤‍🔥11
This media is not supported in your browser
VIEW IN TELEGRAM
💫 ЭМ поле и ртуть. Почему она крутится? 🌀

Под действием электрического поля ртуть отдает один или два своих валентных электрона, образуя электроположительные ионы, и поэтому она может проводить электричество. Однако, атомы ртути (Hg) прочно удерживают свои валентные электроны и с трудом предоставляют их в «общее пользование». Но когда начинает течь ток, кристаллическая решётка ртути оказывается неустойчивой. В опыте имеем скрещенные поля: электрическое поле E и магнитное поле B, вектора которых направлены под углом π/2. В таких полях заряженные частицы из-за силы Лоренца двигаются по траектории, представляющей собой эпициклоиду. Но для наблюдателя кажется, что мы имеем вихревой круговой поток ртути. Разумеется, четкую математическую эпициклоиду получить не получится, ведь мы должны учитывать огромное множество заряженных частиц, а для более корректного описания придется подключать уравнение Навье - Стокса. В совокупности с неустойчивостью ДУ и неоднородных граничных условий описание потока представляет собой очень сложную математическую задачу. #гидродинамика #механика #электричество #магнетизм #физика #physics #видеоуроки #gif

💡 Physics.Math.Code // @physics_lib
1👍49❤‍🔥1511🤔76🔥65
Media is too big
VIEW IN TELEGRAM
👩‍💻Самая большая в мире вакуумная камера. В этой камере проводили эксперимент, который подтвердил теорию Галилея относительно ускорения свободного падения. Суть опыта: с одинаковой высоты в один момент времени отпустили шар для боулинга и несколько перьев. В замедленной съёмке показали, что оба объекта ускоряются одинаково и достигают плоскости Земли одновременно. Это произошло потому, что на них не действует сопротивление воздуха, так как объекты находились в вакууме.

Space Power Facility (сокр. SPF) — крупнейшая в мире термальная вакуумная камера, созданная НАСА в 1969 году. Расположена на станции Плам-Брук, неподалёку от Сандаски. Станция Плам-Брук, в свою очередь, является частью Исследовательского центра Гленна, расположенного в Кливленде. Изначально предназначалась для ядерно-электрических испытаний в условиях вакуума, однако испытания были отменены, а камера законсервирована. В дальнейшем камера использовалась для проведения испытаний двигательных установок космических аппаратов и их систем. Кроме того, в данной камере проводились испытания работоспособности защитных систем приземления в условиях, приближенных к марсианским, для марсоходов Mars Pathfinder и проектах серии Mars Exploration Rover.

Размеры SPF составляют более 30 метров в диаметре и 40 метров - в высоту. По своему устройству SPF представляет собой огромный алюминиевый контейнер, заключённый в бетонный купол. Алюминиевый контейнер состоит из плотных рядов пластин из алюминиевого сплава Type 5083, подогнанных друг к другу таким образом, чтобы не пропускать воздух. #физика #механика #опыты #physics #эксперименты #наука #science #видеоуроки #кинематика #моделирование

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥57👍3019🤨2🆒2❤‍🔥1🤓1
Media is too big
VIEW IN TELEGRAM
⚙️ Крутящий Момент vs Мощность - физика процессов

В спорах о характеристиках двигателя часто сталкиваются два понятия: крутящий момент и мощность. Разберем их фундаментальные отличия без упрощений и мифов.

▪️1. Физическая сущность

Крутящий момент (M, Н∙м) — это сила, умноженная на плечо рычага. В двигателе — это сила, с которой кривошипно-шатунный механизм проворачивает коленчатый вал.
Момент — это "рывковая" сила двигателя. Чем он выше, тем сильнее двигатель "тянет" на низких и средних оборотах.

Мощность (N, л.с. или кВт) — это работа, совершаемая в единицу времени. Показывает, какой объем работы двигатель может выполнить за секунду.
Мощность — это "скорость" выполнения работы. Чем она выше, тем большую скорость может развить автомобиль.

▪️2. Математическая связь

Мощность — это производная от работы момента. Классическая формула: N = M × ω = M × (2π × n) / 60 [Вт] = ( M × n × π ) / 30 000 [кВт] ≈ [ M (Н∙м) × n (об/мин) ] / 9549
Если нужна мощность в лошадиных силах (л.с.), учитываем, что 1 кВт ≈ 1.3596 л.с.
N — мощность (кВт),
ω — угловая скорость (рад/с),
M — крутящий момент (Н∙м),
n — частота вращения коленвала (об/мин).
Мощность не существует без момента. Она является его функцией и напрямую зависит от того, какой момент двигатель развивает на конкретных оборотах.

▪️3. Что важнее на практике?

Некорректно противопоставлять эти величины. Они две стороны одной медали. Однако, для понимания поведения автомобиля:

Высокий момент в широком диапазоне оборотов (полка момента) — определяет динамику разгона и эластичность двигателя. Автомобиль с высоким моментом на "низах" будет уверенно трогаться и обгонять без постоянных переключений передач. Крутящий момент — это сила, которая создает ускорение.
Максимальная мощность — определяет потенциальную максимальную скорость автомобиля. Чтобы разогнаться до высоких скоростей, нужна способность совершать большую работу каждую секунду, то есть высокая мощность. Мощность — это результат применения этой силы с определенной частотой (оборотами).

В современных двигателях важен не пик момента или мощности, а их кривые и ширина рабочего диапазона. Идеал — ровная "полка" момента на низких и средних оборотах, которая обеспечивает высокую мощность на верхах. #техника #конструктор #механика #динамика #опыты #авто #двигатели

⚙️ Тест 9 типов подвесок [ЛегоТехникс]

🖥 Конструирование подводной лодки на радиоуправлении из LEGO

⚙️ Редуктор из LEGO с огромным передаточным числом

⚙️ Моделирование решения задачи передвижения автомобилей по песчаному грунту с помощью конструктора LEGO

⛔️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать

⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!

🎻 Когда Lego играет на гитаре лучше, чем ты...

⚙️ Lego MindStorm

👾 Что будет, если надолго оставить инженера с конструктором Lego

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
58👍44🔥19❤‍🔥6🤨2🗿21
⚙️ Нескучная механика: об устройстве катушки спиннинга

Почему при вращении ручки катушка не просто крутится, а ещё и приподнимается? Сердце любой безынерционной катушки — это механизм «червячной» передачи (worm drive). Он состоит из двух ключевых деталей:
1. «Червь» — стержень со спиральной проточкой, похожий на резьбу.
2. Шестерня (или кулачок), которая с ним сцеплена.

Когда вы вращаете ручку, главная шестерня передаёт вращение на «червяк». Он не вращается вокруг своей оси, а остаётся неподвижным. Вместо этого его спиральная проточка заставляет двигаться обойму с роликом лесоукладывателя. Проще говоря: Вращательное движение ручки преобразуется в возвратно-поступательное движение обоймы вдоль шпули. Это и есть та самая магия, которая равномерно укладывает леску.

А почему возникает «подпрыгивание»? Это «подпрыгивание» или легкое приподнимание катушки при быстром вращении — не брак и не поломка, а проявление гироскопического эффекта. Любое вращающееся тело (в нашем случае — ротор катушки с лесоукладывателем) стремится сохранить положение своей оси вращения. Это тот же принцип, что и у детского волчка или колеса велосипеда. Когда вы начинаете быстро крутить ручку:
1. Ротор катушки раскручивается с большой скоростью.
2. Он превращается в гироскоп.
3. Когда вы ведёте удилищем или просто держите его под углом, на ось вращения ротора действует сила (момент силы), пытающаяся её наклонить.
4. Гироскоп (наш ротор) сопротивляется этому и реагирует не так, как невращающееся тело. Он начинает прецессировать — то есть его ось описывает конус.

Именно эта прецессия и ощущается нами как лёгкие толчки или "подрагивание" катушки в руке. Она особенно заметна на лёгких и скоростных моделях (с высоким передаточным числом), где ротор раскручивается очень быстро. «Подпрыгивание» катушки — это гироскопический эффект, неизбежное следствие быстрого вращения массивных частей. Это признак исправно работающего механизма, а не его недостаток. #техника #конструктор #механика #динамика #опыты #изобретения

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6532🔥175🤯4
This media is not supported in your browser
VIEW IN TELEGRAM
🛩💨 Эффект Прандтля-Глоерта (паровой конус) — научно-популярное название конусовидного облака конденсата, возникающего вокруг объекта, движущегося на околозвуковых скоростях. Чаще всего наблюдается у самолётов. Назван в честь немецкого физика Людвига Прандтля и английского физика Германна Глоерта.

При достижении определённой скорости потока, обтекающего тело (крыло), соответствующей числу Маха, называемому критическим, местная скорость начинает превышать скорость звука. При этом возникает скачок уплотнения — нормальная ударная волна. Однако течения в пограничном слое в силу вязкости имеют существенно меньшую скорость. Возникает градиент скоростей, перпендикулярный поверхности, и как следствие, градиент давления. Этот градиент является неблагоприятным, приводящим к отрыву потока в основании ударной волны, и скачок уплотнения принимает лямбдовидную форму. Отрывное течение как бы оборачивается вокруг скачка, расширяется в зону за ударной волной. Этот процесс является местно адиабатическим, где занимаемый воздухом объём увеличивается, а его температура понижается. Если влажность воздуха достаточно велика, то температура воздуха может оказаться ниже точки росы. Тогда содержащийся в воздухе водяной пар конденсируется в виде мельчайших капелек, которые образуют небольшое облако. Поскольку отрывные течения за ударной волной направлены вдоль её фронта, передний край облака повторяет её форму, образуя конус.

Поскольку по мере удаления от фронта ударной волны температура снова становится равной температуре невозмущенного потока, конденсат испаряется. Поэтому складывается впечатление, что облако пара следует за летательным аппаратом.

При дальнейшем росте скорости фронт нормального скачка смещается по направлению потока, течения в пограничном слое становятся сверхзвуковыми и условия для конденсации исчезают. Поэтому паровой конус наблюдается лишь в узком диапазоне скоростей. #gif #физика #механика #видеоуроки #аэродинамика #термодинамика #МКТ #physics

💡 Physics.Math.Code // @physics_lib
👍9629🔥183🤔3🤯31🤩1