Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
1. Как устроен автомобильный двигатель. 3D анимация сборки автомобильного двигателя внутреннего сгорания.
2. Как работает двухтактный двигатель скутера
3. Двигатель в разрезе
4. Как работает паровой двигатель
5. Двигатель Стирлинга
6. Миниатюрный паровой двигатель
7. Мини-двигатель с AliExpress
8. Паровой или реактивный двигатель
9. Конструкция ДВС
10. Конструирование систем смазки и охлаждения ДВС #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
🐝 «Nano Bee». Двигатель объемом 0,006 см³
Самый маленький четырехцилиндровый ДВС в мире
⚙️ Авиационный гироскоп
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍50🔥15❤12❤🔥4🤩2⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
▪️Двухтактный двигатель. Принцип работы: один полный рабочий цикл (впуск, сжатие, рабочий ход и выпуск) происходит за два такта поршня.
— Отдельного газораспределительного механизма нет — роль впускных и выпускных клапанов выполняют отверстия в стенках цилиндра.
— Топливо обычно смешивается с маслом для смазки движущихся частей.
— Мощность двухтактного двигателя при одинаковых размерах цилиндра и частоте вращения вала теоретически в два раза больше четырёхтактного за счёт большего числа рабочих циклов. Однако неполное использование хода поршня для расширения и затраты части вырабатываемой мощности на продувку приводят к увеличению мощности только на 60–70%.
▪️Четырехтактный двигатель. Принцип работы: рабочий цикл состоит из четырёх тактов (ходов поршня).
— Для переключения полости цилиндра на впуск и на выхлоп используется отдельный газораспределительный механизм.
— Каждая фаза газообмена выполняется во время отдельного полуоборота коленчатого вала.
— Расход топлива ниже, так как топливная смесь полностью сгорает в цилиндре, и только потом, когда открывается выпускной клапан, отработанные газы выходят наружу.
— Экологичность — за счёт полного сгорания топливной смеси выделяется меньше вредных веществ в атмосферу.
#физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍80❤31🔥10❤🔥3⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
Лазерная очистка — метод удаления загрязнений, коррозии и покрытий с металлических поверхностей с использованием направленного высокоэнергетического лазерного луча. В отличие от традиционных методов (абразивных, химических, механических), лазерная технология обеспечивает точную, бесконтактную и экологичную обработку.
Применение:
▪️ Машиностроение — подготовка металлических деталей к дальнейшей обработке или окраске.
▪️ Авиация и аэрокосмическая промышленность — удаление старых покрытий и коррозии с деталей самолётов и космических аппаратов.
▪️ Ремонт и восстановление — восстановление старинных металлических изделий, таких как памятники, оружие или предметы искусства.
▪️ Нефтегазовая отрасль — подготовка трубопроводов и других металлических компонентов, освобождение их от отложений и коррозии.
▪️ Строительство и архитектура — подготовка металлических конструкций, очистка фасадов зданий и памятников от загрязнений и лишних покрытий.
Принцип работы: Процесс лазерной очистки основан на селективном поглощении и испарении загрязнений:
1. Лазерный луч с определённой длиной волны направляется на металлическую поверхность.
2. Загрязняющие вещества (ржавчина, окалина, краска) поглощают энергию лазерного излучения, в то время как сам металл отражает большую часть излучения.
3. Поглощённая энергия вызывает быстрое нагревание и испарение загрязняющих веществ.
4. Испаренные загрязнения удаляются с поверхности потоком инертного газа (например, азота или аргона).
Параметры лазера, такие как длительность импульса, мощность и частота повторения, можно регулировать для оптимизации процесса очистки различных материалов и толщин загрязнений.
#лазер #техника #science #физика #physics #производство
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥72👍27❤19⚡6✍3🤔1👻1🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
▪️ В качестве активной среды — кристалл искусственного рубина ( оксид алюминия Al₂O₃ с небольшой примесью хрома Cr ).
▪️ Из кристалла был изготовлен стержень в виде цилиндра диаметром 1 и длиной 2 см, который в процессе работы подвергался облучению излучением импульсной газоразрядной лампы.
▪️ Резонатором служил резонатор Фабри-Перо, образованный серебряными зеркальными покрытиями, нанесёнными на торцы стержня.
▪️ Лазер работал в импульсном режиме, излучая свет с длиной волны 694,3 нм.
▪️ Майман предложил принцип накачки рабочего тела — короткими вспышками света от лампы-вспышки.
▪️ Зеркальные покрытия на торцах кристалла создавали положительную обратную связь, чтобы усилитель стал генератором.
▪️ Расчёты Маймана показали, что атомы хрома в кристалле рубина имеют подходящую систему энергетических уровней, которая делает возможной генерацию лазерного излучения.
▪️ Первый лазер Маймана стал отправной точкой для развития лазерных технологий. Лазеры стали незаменимыми инструментами в физике, химии, биологии и других научных дисциплинах, позволили учёным проводить более точные эксперименты и измерения.
▪️ Лазеры стимулировали дальнейшие исследования и инновации в области оптики и фотоники, привели к разработке новых типов лазеров, увеличению мощности и эффективности.
Импульсные лазеры мощнее непрерывных в плане мощности:
▫️Непрерывные лазеры характеризуются постоянной выходной мощностью, которая может достигать десятков киловатт. Это делает их идеальными для задач, требующих высокой мощности на протяжении длительного времени, таких как лазерная резка или сварка металлов.
▫️Импульсные лазеры работают иначе — они передают энергию в короткие, мощные вспышки. Это делает их менее энергоёмкими, поскольку импульсы могут достигать высокой пиковой мощности при минимальном общем энергопотреблении. Такой подход позволяет выполнять точные, деликатные работы, не перегревая материал.
Таким образом, для крупных производств, где необходима высокая мощность и стабильность, лучше подойдут непрерывные лазеры, а для точных задач, таких как микросварка, очистка поверхности или гравировка, рекомендуется использовать импульсные лазеры. #лазер #техника #science #физика #physics #производство
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
5👍56⚡50❤40🔥18😱4🤩3🫡1
This media is not supported in your browser
VIEW IN TELEGRAM
Лазерная наплавка — метод нанесения нового слоя металла на деталь или заготовку с помощью сфокусированного лазерного излучения в среде защитного газа. Применяется для восстановления гребного винта — устранения эрозионных разрушений лопастей, которые возникают из-за коррозии и износа в морской воде.
Процесс наплавки гребного винта лазерной сваркой включает несколько этапов:
1. Подготовка поверхности — изношенный слой металла удаляют до чистового с помощью механической обработки (токарной, фрезерной или шлифовальной).
2. Выбор материала — для наплавки используют специальный металлический порошок или сплав, выбор зависит от свойств детали, условий эксплуатации и требований к восстановлению.
3. Лазерное воздействие — мощный лазерный луч фокусируется на поверхности, энергия лазера нагревает поверхность до температуры плавления, создавая «ванну расплава».
4. Наплавка материала — металлический порошок или проволока подаются на плавящуюся поверхность, материал моментально плавится и сливается с базовой поверхностью, образуя новый металлический слой.
5. Контроль нанесения — процесс контролируется с высокой точностью, позволяя равномерно наносить слой материала и достичь желаемых геометрических характеристик.
6. Охлаждение — после наплавки деталь быстро остывает, что предотвращает коробление и разупрочнение основного металла.
7. Финишная обработка — проточка, шлифовка или фрезерование для достижения нужной геометрии и шероховатости.
Специалисты отмечают, что лазерная наплавка позволяет увеличить срок службы гребного винта — наплавленный слой превосходит основной металл по физико-механическим свойствам, исключаются поры и несплавления. Однако есть и ограничения: заниженная мощность излучения (менее 1,4 кВт) может привести к образованию внутренних структурных дефектов (пор, несплавлений), а высокая мощность (более 2,2 кВт) — к дефектам структуры, перегревая ванну расплава. #лазер #техника #science #физика #physics #производство
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥90👍34❤19🤯5⚡2🗿1
🧐 А что если для работы не нужен особо дорогой компьютер?... Да ну нет, бред какой-то...
👨🏻💻 Товарищи инженеры, давайте по одному фото своего рабочего места / сетапа / компьютерного стола в комментарии. Ну и свой род деятельности напишите. Посмотрим корреляцию между сложностью работы и дороговизной оборудования.
🖥 Пару слов о железе — приветствуется.
🖥 или 🖥 для работы ?
🖥 или 🖥 или 🖥 для графики ?
🖥 или🖥 или 🖥 или 🍏 в качестве рабочей OS ?
🖥 или 🍏 ?
#hardware #железо #техника #программирование #ночной_чат #разработка #development #computer_science
💡 Physics.Math.Code // @physics_lib
👨🏻💻 Товарищи инженеры, давайте по одному фото своего рабочего места / сетапа / компьютерного стола в комментарии. Ну и свой род деятельности напишите. Посмотрим корреляцию между сложностью работы и дороговизной оборудования.
#hardware #железо #техника #программирование #ночной_чат #разработка #development #computer_science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥53❤14👍14👨💻6🗿5✍1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
Это гибкая связь между двумя вращающимися частями: стартер и двигатель, например.
Если вы хотите передавать крутящий момент между двумя нефиксированными, почти параллельными, несоосными осями, то выгодно использовать гибкие ремни.
▪️ Первоначально нет чистого крутящего момента, поэтому форма муфты определяется тем, что каждая полоса действует как пружина, и они действуют друг против друга.
▪️ Когда приводной двигатель начинает вращаться, крутящий момент становится наибольшей силой, поэтому муфта закручивается вверх.
▪️ Когда он достигает рабочей скорости, центростремительная сила лент становится наибольшей, поэтому средние части снова выскакивают.
Преимущества: отличная изоляция между двигателем и нагрузкой, относительно высокий КПД при использовании постоянной угловой скорости/крутящего момента, очень простой и легкий ремонт.
Проблемы: Максимальная крутящая нагрузка пропорциональна модулю Юнга лент, а также пределу прочности на разрыв. Медленная реакция.
Гибкая подвижная муфта (гибкая, подвижная, компенсирующая) — это устройство, которое позволяет валам немного смещаться относительно друг друга, но при этом обеспечивает их надёжное соединение. Такие муфты компенсируют угловые, осевые и радиальные смещения валов, а также гасят вибрации и удары, возникающие при работе механизмов. #механика #физика #техника #physics #двигатель #engine #maths #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍109❤22🔥18✍3😱2❤🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Самодельный лазерный уровень 🔴
В последнее время все чаще стала появляться техника, работающая с применением лазерной технологии, например, принтеры, медицинское оборудование, лабораторные приборы и т.д. А знаете ли Вы, что физическая основа лазерного излучения была предсказана еще Альбертом Эйнштейном в 1916 году? Но до изобретения первого лазера было еще далеко. После многочисленных исследований ученых-физиков только в 1960 году Теодор Мейман представил миру первый лазер, излучающий волну за счет искусственного рубина. Изначально луч проецировался в инфракрасном диапазоне, а чуть позже была применена технология окрашивания, и излучение приобрело красный цвет. Это открытие считается одним из самых значимых, совершенных в XX веке. Лазерные технологии стали применяться в космической, военной, промышленной сфере, а в повседневную жизнь человека они вошли только в XXI веке, но сразу охватили практически все сферы деятельности, в том числе, строительство и ремонт.
Около 20 лет назад лазерное излучение стало применяться в измерительных приборах – нивелирах. Это в значительной степени облегчило проведение строительных, отделочных и монтажных работ. Ведь для нанесения разметки не нужно делать сложные замеры, достаточно спроецировать на объект лазерный луч и получить идеально ровную линию. #лазер #техника #science #физика #physics #производство
🔥 Наплавка гребного винта лазерной сваркой
💥 Первый лазер
💥 Лазерная очистка поверхности старой монеты
💥 Лазерная резка
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
В последнее время все чаще стала появляться техника, работающая с применением лазерной технологии, например, принтеры, медицинское оборудование, лабораторные приборы и т.д. А знаете ли Вы, что физическая основа лазерного излучения была предсказана еще Альбертом Эйнштейном в 1916 году? Но до изобретения первого лазера было еще далеко. После многочисленных исследований ученых-физиков только в 1960 году Теодор Мейман представил миру первый лазер, излучающий волну за счет искусственного рубина. Изначально луч проецировался в инфракрасном диапазоне, а чуть позже была применена технология окрашивания, и излучение приобрело красный цвет. Это открытие считается одним из самых значимых, совершенных в XX веке. Лазерные технологии стали применяться в космической, военной, промышленной сфере, а в повседневную жизнь человека они вошли только в XXI веке, но сразу охватили практически все сферы деятельности, в том числе, строительство и ремонт.
Около 20 лет назад лазерное излучение стало применяться в измерительных приборах – нивелирах. Это в значительной степени облегчило проведение строительных, отделочных и монтажных работ. Ведь для нанесения разметки не нужно делать сложные замеры, достаточно спроецировать на объект лазерный луч и получить идеально ровную линию. #лазер #техника #science #физика #physics #производство
🔥 Наплавка гребного винта лазерной сваркой
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥133👍50❤29🙈11❤🔥6✍3🤯1😨1🆒1
Media is too big
VIEW IN TELEGRAM
Видеоэкран с трёхмерной мышью из фототранзистора и двухцветных китайских матриц под управлением микроконтроллера ATmega-644 на собственной многозадачной операционной системе. Сделано на предельно дешёвой элементной базе, вся схема разведена в двух слоях.
Многооконный интерфейс с предзагруженными демо-приложениями: скрин-сейвер, графическая рисовалка, видеролики с альфа-каналом, интерактивное моделирование в реальном времени пламени на основе температурной модели горения и воды методом клеточного автомата.
Сайт автора: http://velect.ru/
Статья о реализованной в проекте многозадачности: http://www.velect.ru/articles.html
#техника #конструктор #ARM #ATmega644 #программирование #механика #разработка #микроконтроллеры
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍118🔥64❤18🤯15🗿13⚡4🙈3😱2🤩2😍2🌚2
Media is too big
VIEW IN TELEGRAM
Из конструктора LEGO Technic можно собирать механические подвески — узлы, которые входят в состав моделей автомобилей, мотоциклов и других транспортных средств. Некоторые наборы LEGO Technic, в которых есть подвески:
▪️MOC-159983 — Axle with Steering, Drive, Suspension for 1:10 wheels (2023) — набор с подвеской для колёс 1:10.
▪️MOC-152716 — Simple Front Suspension (2023) — набор с простой передней подвеской.
▪️MOC-132045 — Front Race Car Suspension (2022) — набор с подвеской для передней оси гоночного автомобиля.
▪️MOC-128195 — Torsen differential mounted on a double wishbone suspension (2022) — набор с дифференциалом Торсена, установленным на подвеску с двойными поперечными рычагами.
⚙️ Редуктор из LEGO с огромным передаточным числом
⚙️ Моделирование решения задачи передвижения автомобилей по песчаному грунту с помощью конструктора LEGO
⛔️ 7 препятствий и 5 LEGO-роботов, которые умеют шагать
⚙️ LEGO® Technic Строительство мостов: Задача на 100 кг!
🎻 Когда Lego играет на гитаре лучше, чем ты...
⚙️ Lego MindStorm
👾 Что будет, если надолго оставить инженера с конструктором Lego
#техника #конструктор #ARM #программирование #механика #разработка #микроконтроллеры
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44❤16🔥10❤🔥7😍2🤩1
Очевидно, что есть два способа, если исключаем одноканал: Способ 1 (4x8 ГБ) vs Способ 2 (2x16 ГБ). Однозначно лучше и эффективнее: Способ 2 — 2 планки по 16 ГБ. Вот почему это так, особенно для современных платформ (AMD AM5 и Intel LGA 1700/1851):
▪️ 1. Меньшая нагрузка на контроллер памяти (IMC). Контроллеру памяти внутри процессора значительно проще работать с двумя планками, чем с четырьмя. Это повышает стабильность системы, особенно при работе на высоких частотах с низкими таймингами.
▪️ 2. Более высокий шанс запуска на заявленной высокой частоте. Память DDR5 особенно чувствительна к количеству модулей. Сборка из 2 планок с большой вероятностью заработает на своей штатной частоте (например, 6000 МГц) с включенным EXPO/XMP. Сборка из 4 планок почти всегда потребует ручного понижения частоты (например, до 5200-5600 МГц) или увеличения таймингов для стабильной работы.
⚠️ Потеря в производительности от более низкой частоты часто перевешивает гипотетический выигрыш от четырёхканального доступа.
▪️ 3. Возможность будущего апгрейда. У вас останутся два свободных слота на материнской плате. Если вам вдруг позарез понадобится 64 ГБ (для монтажа, работы с AI и т.д.), вы просто докупите еще два модуля по 16 ГБ. В варианте с 4x8 ГБ апгрейд возможен только полной заменой всех планок на 4 новых.
▪️ 4. Совместимость и стабильность. Комплекты из двух планок протестированы производителем и гарантированно работают вместе. Сборка из четырёх планок — это всегда лотерея, даже если вы покупаете два одинаковых комплекта по 2x8 ГБ.
Краткий итог: Для 99% пользователей, особенно геймеров, конфигурация 2 модуля по 16 ГБ является золотым стандартом и оптимальным выбором.
Нужно ли 64 ГБ для игрового компьютера? На данный момент (2025 год) для чисто игрового компьютера 64 ГБ — это избыточно. И вот почему:
▪️ Подавляющее большинство игр комфортно себя чувствуют в рамках 16-32 ГБ оперативной памяти. Даже такие современные и требовательные тайтлы, как Cyberpunk 2077 с патчейми, Alan Wake 2, Star Citizen, могут потреблять до 20-24 ГБ ОЗУ, но это включает в себя и саму ОС, и фоновые приложения.
▪️ 32 ГБ — это идеальный и достаточный объем на ближайшие 2-3 года для любых игр с запасом. Вы полностью исключите любые подтормаживания, связанные с нехваткой ОЗУ, и сможете держать открытым браузер, дискорд и другие приложения во время игры.
▫️1. Параллельная работа с "тяжелыми" приложениями: Если вы одновременно с игрой занимается стримингом (через OBS Studio), монтажом видео, рендерингом или работаете с виртуальными машинами.
▫️2. Очень специфичные игры и моды: Некоторые симуляторы (например, Microsoft Flight Simulator 2024 с огромным количеством модов на высоких настройках) или моды для игр вроде Cities: Skylines II могут "съедать" гигантские объемы памяти.
▫️3. Работа с ИИ (AI): Локальное использование нейросетей (генерация изображений, работа с LLM-моделями) требует огромных объемов ОЗУ.
▫️4. Профессиональные задачи: Видеомонтаж в 4K/8K, работа с большими базами данных, 3D-моделирование сложных сцен.
Останавливайтесь на объеме 32 ГБ. Этого более чем достаточно для игр и многозадачности. Вкладывайте сэкономленный бюджет (от не покупки 64 ГБ) в более важные компоненты: например, в более мощную видеокарту или более быстрый накопитель. Это даст гораздо более заметный прирост производительности в играх. Если в будущем вы поймете, что 64 ГБ вам реально нужны, вы всегда сможете докупить второй идентичный комплект из 2x16 ГБ и получить в сумме 64 ГБ. Но будьте готовы к тому, что для стабильной работы системе, возможно, придется сбросить частоту памяти. #hardware #железо #техника #программирование #разработка #development #computer_science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥61❤32👍23❤🔥6💯3🤔2🗿2⚡1👨💻1
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Поскольку длительность используемых в данном методе обработки электрических импульсов не превышает 0.01 с, выделяющееся тепло не успевает распространиться в глубь материала и даже незначительной энергии оказывается достаточно, чтобы разогреть, расплавить и испарить небольшое количество вещества. Кроме того, давление, развиваемое частицами плазмы при ударе об электрод, способствует выбросу (эрозии) не только расплавленного, но и просто разогретого вещества. Поскольку электрический пробой, как правило, происходит по кратчайшему пути, то прежде всего разрушаются наиболее близко расположенные участки электродов. Таким образом, при приближении одного электрода заданной формы (инструмента) к другому (заготовке) поверхность последнего примет форму поверхности первого. Производительность процесса, качество получаемой поверхности в основном определяются параметрами электрических импульсов (их длительностью, частотой следования, энергией в импульсе). Электроэрозионный метод обработки объединил электроискровой и электроимпульсный методы.
Первые сообщения об электрических разрядах и эффектах, их сопровождающих, делали Роберт Бойль (1694), Бенджамин Франклин (1751), Джозеф Пристли (1766) Лихтенберг Георг Кристиан (1777). В 1938 году советский инженер Л. А. Юткин показал, что серия электроискровых разрядов порождает формообразующие гидравлические удары, что положило начало электроискровой штамповке металлов, и стало следующим, после электродуговой сварки, шагом по развитию технологических методов формообразования электрическими разрядами. В 1941 году учёным Б. Р. Лазаренко и Н. Е. Лазаренко из МГУ было поручено найти методы увеличения срока службы прерывателей-распределителей зажигания автомобильных двигателей. В результате исследований и экспериментов с вольфрамом они обратили внимание на направленное разрушение электрическими разрядами, создаваемыми импульсами определённой формы тока, что послужило толчком к созданию в 1943 году нового технологического процесса обработки заготовок с помощью электроэрозии. #physics #техника #электродинамика #физика #видеоуроки #производство #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍47🔥23❤19⚡4🥰2
This media is not supported in your browser
VIEW IN TELEGRAM
Что такое гидродинамическое сопротивление? Это сила, которая противодействует движению тела в воде. Оно складывается из нескольких компонентов, но в нашем случае ключевую роль играют два:
▪️Сопротивление трения: Связано с вязкостью воды. Чем больше смоченная поверхность тела, тем выше сопротивление.
▪️Сопротивление формы (или давление): Связано с разницей давлений на носовой и кормовой частях тела. "Лобовые" элементы, создающие турбулентность и разрежение за собой, сильно увеличивают это сопротивление.
Неподвижный винт с жестко закрепленными лопастями — это идеальный генератор сопротивления формы. Представьте себе лопасть винта:
▪️Она имеет сложный аэродинамический профиль, оптимизированный для работы в режиме тяги (когда вращается и "ввинчивается" в воду).
▪️Когда судно движется, а винт неподвижен, поток воды набегает на лопасть под отрицательным углом атаки (фактически, с "обратной", нерабочей стороны).
▪️В таком режиме профиль лопасти работает крайне неэффективно: за лопастью образуется мощная зона турбулентности и кавитации (разрывов потока), что создает очень высокое сопротивление давления.
Аналогия: Попробуйте протащить по воде обычную ложку выпуклой стороной вперед. А потом — ребром. Разница в сопротивлении будет колоссальной. Неподвижный винт — это и есть несколько таких "ложек", создающих огромный тормозящий эффект. Для парусной яхты это означает потерю скорости до 0.5-1 узла, что очень много в условиях слабого ветра.
В сложенном положении лопасти поворачиваются вокруг своих осей и складываются вдоль линии потока воды, параллельно валу или в специальные выемки в ступице. Что это дает с точки зрения гидродинамики:
1. Резкое снижение сопротивления формы: Вместо объемных, необтекаемых лопастей, поток воды обтекает компактную, обтекаемую ступицу и сложенные лопасти. Зона турбулентности и разрежения за ними минимальна.
2. Уменьшение смоченной поверхности: Сложенные лопасти представляют собой гораздо меньшую площадь, что снижает сопротивление трения.
В результате, сложенный винт создает сопротивление, сравнимое с сопротивлением простого стержня (вала), что позволяет судну развивать значительно большую скорость под парусами или экономить топливо на буксире. Обычно складывание/раскладывание происходит автоматически под действием двух сил:
1. Центробежная сила: При запуске двигателя и раскрутке вала центробежная сила стремится "выбросить" лопасти наружу, преодолевая усилие специальных пружин или грузов.
2. Гидродинамическая сила: Когда лопасти начинают захватывать воду, давление на их рабочую поверхность окончательно переводит их в рабочее, развернутое положение.
♻️ Существует также вариант V-образного (ферингтоновского) винта, у которого лопасти не складываются, а разворачиваются ребром к потоку, что дает схожий эффект снижения сопротивления. А для самых требовательных к скорости яхт используются съемные винты, которые убираются в специальный колодец в корпусе, полностью устраняя сопротивление. #гидростатика #гидродинамика #физика #physics #опыты #техника
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍73🔥30❤9✍4❤🔥3🤯2🌚2🤨2🙈2😱1🆒1