📚 Физика (Американский курс физики для средней школы) [1973-1974] Комитет содействия изучения физики при Массачусетском технологическом институте
Переводчик: Ахматов А.С.
💾 Скачать книги
Конечно, учебник не свободен от ряда недостатков и не пригоден для введения его в советской средней школе по его методологической основе, недостаточности используемого математического аппарата и многим другим признакам. Тем не менее по богатству материала, оригинальности многих замыслов и по мастерству изложения ряда вопросов книга заслуживает большого внимания со стороны наших педагогов и учащихся. Именно эти соображения послужили основанием для перевода на русский язык первого издания учебника*). #физика #physics #подборка_книг #учебники #наука
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
💡 Physics.Math.Code // @physics_lib
Переводчик: Ахматов А.С.
💾 Скачать книги
Конечно, учебник не свободен от ряда недостатков и не пригоден для введения его в советской средней школе по его методологической основе, недостаточности используемого математического аппарата и многим другим признакам. Тем не менее по богатству материала, оригинальности многих замыслов и по мастерству изложения ряда вопросов книга заслуживает большого внимания со стороны наших педагогов и учащихся. Именно эти соображения послужили основанием для перевода на русский язык первого издания учебника*). #физика #physics #подборка_книг #учебники #наука
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
+79616572047
(СБП) ЮMoney: 410012169999048
💡 Physics.Math.Code // @physics_lib
👍39❤19🔥10🤩1🙏1😍1🤗1
This media is not supported in your browser
VIEW IN TELEGRAM
Плазма дуги будет очень сильно реагировать на мощные неодимовые магниты. Дуга начнет двигаться, изгибаться и даже вращаться под действием магнитного поля. Плазма электрической дуги — это раскаленный ионизированный газ, состоящий из положительных ионов и отрицательных электронов. Это, по сути, проводник с током.
На любой движущийся заряженный частицы (а электроны в токе как раз движутся) действует сила Лоренца. Ее направление зависит от направления тока и направления магнитного поля (определяется по правилу левой руки).
Что происходит в дуге:
1. Сила, действующая на носители тока: Магнитное поле магнитов действует на движущиеся электроны (основные носители тока в дуге) с определенной силой, перпендикулярной и их движению, и направлению поля.
2. Смещение и растяжение дуги: Поскольку сила Лоренца действует на всю дугу, она начинает "толкать" плазменный шнур. Дуга перестает быть прямой кратчайшей линией между электродами и изгибается, вытягиваясь в сторону, перпендикулярную линиям магнитного поля.
3. Эффект "магнитного дутья": Это классический технический прием для гашения электрической дуги в высоковольтных выключателях. Мощные магниты располагают так, чтобы сила Лоренца растягивала дугу, заставляя ее двигаться вдоль дугогасительной камеры. При движении дуга контактирует с холодными стенками камеры, интенсивно охлаждается, и ее сопротивление растет, пока она не погаснет.
Если прикрепить мощные неодимовые магниты с противоположными полюсами по бокам от дуги, вы увидите следующие эффекты:
▪️ Отклонение дуги: Дуга будет не просто прыгать между электродами, а будет изогнутой, похожей на арку или букву "С".
▪️ Движение дуги: Если расположить магниты особым образом (например, создав поле, перпендикулярное плоскости дуги), можно заставить дугу быстро вращаться вокруг электродов. Это выглядит как яркое, светящееся "огненное колесо".
▪️ Удлинение и охлаждение: Растянутая дуга становится длиннее, что приводит к ее охлаждению. Она может стать более бледной и менее стабильной.
▪️ Ускоренное гашение: Если источник питания не может поддерживать растянутую и охлажденную дугу, она может погаснуть быстрее, чем без магнитов.
1. Плазменные резаки и сварочные аппараты: В некоторых современных плазменных резаках используются магнитные системы для стабилизации и вращения плазменной струи. Это повышает качество и равномерность реза.
2. Исследования термоядерного синтеза (Токамак): Это самый масштабный пример. Гигантские сверхпроводящие магниты используются для удержания и стабилизации плазмы, не давая ей коснуться стенок реактора.
3. Высоковольтные выключатели: Как уже упоминалось, для принудительного гашения дуги.
Если вы прикрутите мощные неодимовые магниты к электродам с дугой, вы не просто увидите реакцию плазмы — вы станете свидетелем фундаментального физического явления, которое лежит в основе многих современных технологий. Дуга будет активно изгибаться и двигаться под действием магнитного поля, демонстрируя прямую связь между электричеством и магнетизмом. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥40👍20❤11⚡7🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Диамагнитная беговая дорожка
Набор из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики
💡 Physics.Math.Code // @physics_lib
Набор из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики
💡 Physics.Math.Code // @physics_lib
👍59❤18🔥13⚡1😍1
This media is not supported in your browser
VIEW IN TELEGRAM
И вот мы, люди 21 века, смотрим на эту семидесятилетнюю технологию, как на чудо
✨ Как сделать сварочный аппарат из карандаша и лезвия
Какой флюс для пайки самый лучший на сегодняшний день?
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍61❤32🔥23🆒2🗿1
This media is not supported in your browser
VIEW IN TELEGRAM
💪 Не мускулами, а умом: как гидравлика умножает наши силы
Когда нужно поднять многоэтажный автобус для замены колеса или плавно опустить шасси огромного самолета, на помощь приходит она — гидравлика.
Принцип прост до гениальности: сила, приложенная к одному участку жидкости, передается без изменения в любую другую точку. Вся хитрость — в разной площади поршней.
Представьте:
▪️ У вас есть два соединенных шприца — маленький (1 см²) и большой (100 см²).
▪️ Если надавить на малый поршень с силой всего в 1 кг, то согласно закону Паскаля, давление в жидкости распространится повсюду.
▪️ На большой поршень это же давление будет давить с гораздо большей силой: Сила = Давление × Площадь. В нашем примере — уже 100 кг!
Именно так работают домкраты, прессы и тормозные системы. Мы вкладываем маленькое усилие, а на выходе получаем огромное. Мы не создаем энергию из ниоткуда, мы просто меняем соотношение сил, жертвуя расстоянием (малый поршень надо прожать много раз, чтобы большой поднялся немного).
🔍 Исторический факт: А знаете ли вы, что фундамент этой технологии заложил выдающийся французский ученый Блез Паскаль? В 1648 году он провел эффектный эксперимент, впоследствии названный «Паскалевой бочкой».
Он вставил в закрытую бочку, наполненную водой, очень длинную и тонкую вертикальную трубку. Поднявшись на балкон, он влил в эту трубку всего несколько кружек воды. Давление, созданное маленьким столбом жидкости в узкой трубке, передалось по всем направлениям и преумножилось так, что мощные дубовые доски бочки не выдержали и она треснула. Этот наглядный опыт блестяще подтвердил его теорию, а сегодня его именем названа единица измерения давления.
Так что, в следующий раз, видя работу подъемного крана, вспомните о силе воды и гениальном французе XVII века! 🚀 #гидравлика #физика #историянауки #технологии #physics #инженерия #science
💦 Гидротаранный насос (или просто гидротаран)
💧 Гидростатический парадокс или парадокс Паскаля
😠 Принцип работы гидравлического пресса
⚙️ Принцип работы гидравлической машины
💡 Physics.Math.Code // @physics_lib
Когда нужно поднять многоэтажный автобус для замены колеса или плавно опустить шасси огромного самолета, на помощь приходит она — гидравлика.
Принцип прост до гениальности: сила, приложенная к одному участку жидкости, передается без изменения в любую другую точку. Вся хитрость — в разной площади поршней.
Представьте:
▪️ У вас есть два соединенных шприца — маленький (1 см²) и большой (100 см²).
▪️ Если надавить на малый поршень с силой всего в 1 кг, то согласно закону Паскаля, давление в жидкости распространится повсюду.
▪️ На большой поршень это же давление будет давить с гораздо большей силой: Сила = Давление × Площадь. В нашем примере — уже 100 кг!
Именно так работают домкраты, прессы и тормозные системы. Мы вкладываем маленькое усилие, а на выходе получаем огромное. Мы не создаем энергию из ниоткуда, мы просто меняем соотношение сил, жертвуя расстоянием (малый поршень надо прожать много раз, чтобы большой поднялся немного).
🔍 Исторический факт: А знаете ли вы, что фундамент этой технологии заложил выдающийся французский ученый Блез Паскаль? В 1648 году он провел эффектный эксперимент, впоследствии названный «Паскалевой бочкой».
Он вставил в закрытую бочку, наполненную водой, очень длинную и тонкую вертикальную трубку. Поднявшись на балкон, он влил в эту трубку всего несколько кружек воды. Давление, созданное маленьким столбом жидкости в узкой трубке, передалось по всем направлениям и преумножилось так, что мощные дубовые доски бочки не выдержали и она треснула. Этот наглядный опыт блестяще подтвердил его теорию, а сегодня его именем названа единица измерения давления.
Так что, в следующий раз, видя работу подъемного крана, вспомните о силе воды и гениальном французе XVII века! 🚀 #гидравлика #физика #историянауки #технологии #physics #инженерия #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍101🔥37❤33❤🔥2🤯2🤩2🤨2😱1
💫 Ричард Фейнман: 7 лекций о связи математики и физики // Характер физических законов
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
❤79👍37❤🔥6🔥4⚡1😍1
Media is too big
VIEW IN TELEGRAM
🧊 Интересный опыт: Лёд под проволокой
Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?
Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки
💡 Physics.Math.Code // @physics_lib
Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?
Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки
💡 Physics.Math.Code // @physics_lib
🔥43👍31❤11🤯2😱2❤🔥1🤩1
В коридоре Оксфордского университета стоит невзрачный на вид прибор, который тихо звонит уже почти 185 лет. Этот эксперимент начался в 1840 году, и с тех пор Оксфордский электрический звонок (также известный как Clarendon Dry Pile) работает практически без остановок, став символом невероятной долговечности и загадки для научного сообщества.
Устройство выглядит просто: два латунных колокольчика, между которыми колеблется металлический шарик-маятник диаметром около 4 мм. Под колокольчиками скрыта сухая батарея — так называемый «замбониев столб», изобретенный итальянским физиком Джузеппе Замбони в 1812 году.
Батарея создает высокое напряжение (предположительно около 2 кВ). Когда маятник касается одного колокольчика, он заряжается и отталкивается от него, притягиваясь к противоположному. При касании второго колокольчика процесс повторяется. Шарик колеблется с частотой 2 Гц, что приводит к непрерывному звону.
Ключевая особенность — чрезвычайно низкое энергопотребление. Батарея отдает крошечный ток, которого хватило на века работы. Сама батарея герметично залита серой, что защищает ее от влаги и окисления.
Точный химический состав батареи остается неизвестным. Ученые предполагают, что это усовершенствованный вариант батареи Замбони, состоящий из тысяч чередующихся слоев: металлической фольги (возможно, цинк) и бумажных дисков, пропитанных электролитом (например, диоксидом марганца).
Однако вскрыть батарею для изучения невозможно — это прервет уникальный эксперимент. Профессор Роберт Уокер, приобретший звонок в 1840 году, не оставил записей о ее устройстве, и тайна остается нераскрытой.
В 1984 году звонок был внесен в Книгу рекордов Гиннесса как «самый долговечный источник энергии». По подсчетам, он совершил уже более 10 миллиардов ударов.
Звонок демонстрирует принципы электростатики и пределы энергоэффективности. Его используют в дискуссиях о втором законе термодинамики, хотя сам он не является «вечным двигателем» — работа закончится, когда батарея исчерпает ресурс или износятся механические части.
Можно ли услышать звонок сегодня — да. Звонок до сих пор находится в Кларендонской лаборатории Оксфордского университета, за двумя стеклянными панелями (они приглушают звук). Услышать его могут студенты, ученые и туристы, но из-за тихого звука требуется прислушаться. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤94🔥67👍39🤔11⚡5💯3🆒1
This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Точки пересечения кругов на воде движутся по гиперболе
Кто сможет доказать данный факт математически?
#математика #math #maths #mathematics #геометрия #опыты #физика #physics
💡 Physics.Math.Code // @physics_lib
Кто сможет доказать данный факт математически?
#математика #math #maths #mathematics #геометрия #опыты #физика #physics
💡 Physics.Math.Code // @physics_lib
🔥64👍30❤10✍3🤯3🥰1
Эффект назван по фамилии швейцарского физика Вольфганга Эрнста Паули, который был стопроцентным теоретиком. Он работал в области физики элементарных частиц и стал лауреатом Нобелевской премии 1945 года. Большинству из нас он известен благодаря "принципу Паули". Но прошу не путать "принцип Паули" с "эффектом Паули".
Принцип Паули — это квантово-механический принцип, который гласит, что два или более идентичных фермиона не могут одновременно находиться в одном и том же квантовом состоянии в квантовой системе. Но в статье речь не об этом, так что не пугайтесь.
Эффект же Паули заключается в том, что при появлении теоретика рядом с экспериментальной установкой результаты могут получиться неверными или эксперимент не удастся вовсе. Этот эффект не имеет никакого теоретического подтверждения и обоснования, но неоднократно наблюдался на практике разными людьми.
Известно, что Паули был стопроцентным теоретиком и при его появлении в лабораториях и на экспериментах, почти каждый раз что-то шло не так. Хотите верьте, хотите нет, но даже его друг Нобелевский лауреат Отто Штерн запрещал Паули находится в лаборатории во время проведения экспериментов.
Всё началось с того, что коллеги Паули начали замечать, что как только Паули входил в комнату, где проводились эксперименты, приборы тут же начинали показывать неверные значения и "сходили с ума". Сначала это называли "эффектом Паули" только те, кто непосредственно работал с Паули всё время. Но вскоре "слава" о Нобелевском лауреате вышла далеко за пределы его личных знакомств.
🕰 Эксперимент с часами: Проверить этот эффект взялись студенты Паули. Они соединили настенные часы с дверью через реле таким образом, что, когда открывается дверь, часы замедляли свой ход. Ничего не подозревающий Паули, зашёл в аудиторию, провел, как и планировал лекцию, а время сверял по тем самым часам, с которыми студенты связали реле. Как оказалось потом, часы так и не замедлили ход, вышло из строя реле.
Позже студенты сделали другой механизм. Они связали дверь с люстрой. Когда дверь открывалась, люстра должна была падать. Но когда дверь открыл Паули, ничего не произошло. В механизме что-то сломалось. Сам Паули увидел сложную конструкцию и сказал: "Как я понимаю, вы только что доказали эффект Паули".
🚂 Странный случай на железной дороге: Но самый невероятный случай произошел, когда Паули ехал из Цюриха в Копенгаген навестить и обсудить последние новости физики со своим небезызвестными приятелем Нобелевским лауреатом Нильсом Бором. Известный физик и ещё один Нобелевский лауреат Джеймс Франк работал в лаборатории в городке Геттинген. В Геттингенский университет как раз привезли самое современное и дорогое оборудование от передовых производителей для проведения сложных экспериментов по изучению атомов. Но когда Франк начал проводить эксперимент, что-то пошло не так и установка вышла из строя. Время происшествия было точно известно и, как позже выяснилось, как раз в эти минуты поезд, на котором ехал Паули, сделал короткую семиминутную остановку на станции в Геттингене.
Как я уже сказал, доказанных подтверждений эффекта или того, что Паули каким-то образом влиял на экспериментальные установки, нет. Возможно, всё это не более чем совпадения и стечения обстоятельств. Но и сейчас находятся люди, которые уверены, что встречались с такими людьми или сами являются ими. #физика #physics #science #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥133❤56😎29👍16🤓9🌚6🤷♂3⚡3🤯2👻2✍1