This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧲 Удивительные свойства магнитного поля, визуализация поля с помощью металлических палочек или стружки
Магнит и железная стружка: Почему железные опилки, притянувшись к полюсу магнита, образуют кисти, отталкивающиеся друг от друга? Опилки намагничиваются, а затем располагаются по магнитным линиям магнитного поля, притягиваясь одним полюсом к магниту, а другим отталкиваясь друг от друга.
Неодимовый магнит — мощный постоянный магнит, состоящий из сплава редкоземельного элемента неодима, бора и железа. Кристаллическая структура имеет тетрагональную форму и представлена формулой Nd₂Fe₁₄B. Известен своей мощностью притяжения и высокой стойкостью к размагничиванию. Имеет металлический блеск, обусловленный покрытием (на изломе — серый), очень востребован и применяется в разных областях промышленности, медицины, в быту и электронике. #физика #physics #gif #видеоуроки #научные_фильмы #колебания #электричество #физика #опыты #магнетизм
💡 Physics.Math.Code // @physics_lib
Магнит и железная стружка: Почему железные опилки, притянувшись к полюсу магнита, образуют кисти, отталкивающиеся друг от друга? Опилки намагничиваются, а затем располагаются по магнитным линиям магнитного поля, притягиваясь одним полюсом к магниту, а другим отталкиваясь друг от друга.
Неодимовый магнит — мощный постоянный магнит, состоящий из сплава редкоземельного элемента неодима, бора и железа. Кристаллическая структура имеет тетрагональную форму и представлена формулой Nd₂Fe₁₄B. Известен своей мощностью притяжения и высокой стойкостью к размагничиванию. Имеет металлический блеск, обусловленный покрытием (на изломе — серый), очень востребован и применяется в разных областях промышленности, медицины, в быту и электронике. #физика #physics #gif #видеоуроки #научные_фильмы #колебания #электричество #физика #опыты #магнетизм
💡 Physics.Math.Code // @physics_lib
👍74🔥22❤5🤷♂2⚡2👏1🌚1😈1
Media is too big
VIEW IN TELEGRAM
🔊 Акустическая левитация — это метод подвешивания вещества в воздухе против силы тяжести с использованием давления акустического излучения звуковых волн высокой интенсивности.
Обычно используются звуковые волны на ультразвуковых частотах.
Акустическая левитация — устойчивое положение весомого объекта в области узлов стоячей акустической волны. Частицы захватываются в узлах стоячей волны, образованной либо источником звука и отражателем (в случае рупора Ланжевена), либо двумя наборами источников (в случае TinyLev). Это зависит от размера частиц по отношению к длине волны, обычно в районе 10% или менее, а максимальный вес при левитации обычно составляет порядка нескольких миллиграммов. #акустика #механика #волны #колебания #физика #physics #видеоуроки #gif
💡 Physics.Math.Code // @physics_lib
Обычно используются звуковые волны на ультразвуковых частотах.
Акустическая левитация — устойчивое положение весомого объекта в области узлов стоячей акустической волны. Частицы захватываются в узлах стоячей волны, образованной либо источником звука и отражателем (в случае рупора Ланжевена), либо двумя наборами источников (в случае TinyLev). Это зависит от размера частиц по отношению к длине волны, обычно в районе 10% или менее, а максимальный вес при левитации обычно составляет порядка нескольких миллиграммов. #акустика #механика #волны #колебания #физика #physics #видеоуроки #gif
💡 Physics.Math.Code // @physics_lib
👍65🔥16😍10❤7🗿2
📚 Лекции по сверхвысокочастотной электронике для физиков [2 тома] [2003] Трубецков, Храмов
💾 Скачать книги
Лекции предназначены для физиков различных специальностей, интересующихся процессами взаимодействия электронов с электромагнитными полями, для научных работников, аспирантов и инженеров, проводящих исследования в области вакуумной СВЧ-электроники, радиофизики, радиотехники и физики плазмы. Они могут быть полезны студентам старших курсов соответствующих специальностей.
✏️ Рудольф Компфнер, создатель «лампы с бегущей волной» (без которой не было бы, например, спутниковой связи), сказал: «Самый успешный путь обучения — проделать все самому и учиться на собственных ошибках. Хороший путь — наблюдать, как кто-то проделывает это. Третий путь — слушать лекции о том, как и что делать; и последний стоящий путь — прочитать об этом». Поэтому лекции нужны, особенно, если они с обратной связью, и еще особеннее, когда преподаватель — это не просто "лектор", а применяет технологию "два с половиной", как назвал бы ее Компфнер. То есть показывает на занятиях элементы реального процесса решения задач. Это рискованная методика, которая требует от педагога самоуверенности, а от участников занятия — доверия. Создать такую ситуацию нелегко; лучшим примером был Ричард Фейнман. #электродинамика #электроника #физика #СВЧ #оптика #волны #колебания #квантовая_физика
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Лекции предназначены для физиков различных специальностей, интересующихся процессами взаимодействия электронов с электромагнитными полями, для научных работников, аспирантов и инженеров, проводящих исследования в области вакуумной СВЧ-электроники, радиофизики, радиотехники и физики плазмы. Они могут быть полезны студентам старших курсов соответствующих специальностей.
✏️ Рудольф Компфнер, создатель «лампы с бегущей волной» (без которой не было бы, например, спутниковой связи), сказал: «Самый успешный путь обучения — проделать все самому и учиться на собственных ошибках. Хороший путь — наблюдать, как кто-то проделывает это. Третий путь — слушать лекции о том, как и что делать; и последний стоящий путь — прочитать об этом». Поэтому лекции нужны, особенно, если они с обратной связью, и еще особеннее, когда преподаватель — это не просто "лектор", а применяет технологию "два с половиной", как назвал бы ее Компфнер. То есть показывает на занятиях элементы реального процесса решения задач. Это рискованная методика, которая требует от педагога самоуверенности, а от участников занятия — доверия. Создать такую ситуацию нелегко; лучшим примером был Ричард Фейнман. #электродинамика #электроника #физика #СВЧ #оптика #волны #колебания #квантовая_физика
💡 Physics.Math.Code // @physics_lib
👍55🔥12❤6⚡2❤🔥2😍2
Media is too big
VIEW IN TELEGRAM
🔦 Владимир Сурдин: ощущение скорости движения
История определения скорости Света уходит к временам Галилео Галилея. До Галилея скорость Света считалась бесконечной. Галилей первый попытался со своим помощником определить скорость Света. Опыт заключался в том, что Галилей и помощник, находились с фонарями на двух холмах, расстояние между которыми было известным. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. Однако ничего не получилось.
Олаф Ремер, исследуя движение спутника Ио на орбите вокруг Юпитера, заметил задержку прихода Света от спутника при разном положении Земли на орбите. Исходя из этого он определил скорость Света равной 220000км/сек.
Английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.
Опыты Майкельсона продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму. Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Майкельсон определил величину скорости света – 299796 км/сек.
Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. #электродинамика #электроника #физика #свет #оптика #волны #колебания #квантовая_физика
💡 Physics.Math.Code // @physics_lib
История определения скорости Света уходит к временам Галилео Галилея. До Галилея скорость Света считалась бесконечной. Галилей первый попытался со своим помощником определить скорость Света. Опыт заключался в том, что Галилей и помощник, находились с фонарями на двух холмах, расстояние между которыми было известным. Один из них открывал заслонку на фонаре, а второй должен был проделать то же самое, когда увидит свет первого фонаря. Зная расстояние и время (задержку перед тем, как помощник откроет фонарь) Галилей рассчитывал вычислить скорость света. Однако ничего не получилось.
Олаф Ремер, исследуя движение спутника Ио на орбите вокруг Юпитера, заметил задержку прихода Света от спутника при разном положении Земли на орбите. Исходя из этого он определил скорость Света равной 220000км/сек.
Английской астроном Дж. Брэдли «уточнил» этот показатель до 308000 км/сек. Позже скорость света измерили французские астрофизики Франсуа Арго и Леон Фуко, получив на «выходе» 298000 км/сек. Еще более точную методику измерения предложил создатель интерферометра, известный американский физик Альберт Майкельсон.
Опыты Майкельсона продолжались с 1924 по 1927 год и состояли из 5 серий наблюдений. На горе Вильсон в окрестностях Лос-Анжелеса были установлены источник света, зеркало и вращающаяся восьмигранная призма, а через 35 км на горе Сан-Антонио – отражающее зеркало. Вначале свет через линзу и щель попадал на вращающуюся с помощью высокоскоростного ротора (со скоростью 528 об/сек.) призму. Участники опытов могли регулировать частоту вращения таким образом, чтобы изображение источника света было четко видно в окуляре. Майкельсон определил величину скорости света – 299796 км/сек.
Окончательно со скоростью света ученые определились во второй половине XX века, когда были созданы мазеры и лазеры, отличающиеся высочайшей стабильностью частоты излучения. #электродинамика #электроника #физика #свет #оптика #волны #колебания #квантовая_физика
💡 Physics.Math.Code // @physics_lib
👍125❤19🔥12⚡7🤔3
This media is not supported in your browser
VIEW IN TELEGRAM
➰ Сумма колебаний одинаковой амплитуды, но с отношением фаз, которое равно золотому сечению φ. В результате получается такая картинка
#физика #physics #математика #gif #опыты #видеоуроки #math #научные_фильмы #колебания
💡 Physics.Math.Code // @physics_lib
#физика #physics #математика #gif #опыты #видеоуроки #math #научные_фильмы #колебания
💡 Physics.Math.Code // @physics_lib
1👍103🔥30❤12🤨4⚡2🥰2👏1
This media is not supported in your browser
VIEW IN TELEGRAM
〰️ Воздействие звуковых волн различных частот на соль
🔊 Колебания, стоячие волны, резонанс и сахар в качестве индикатора узлов звуковых волн
🔊 Акустическая левитация капель
〰️ Акустическая левитация
#физика #волны #physics #science #колебания #видеоуроки #наука #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥58👍25🤩8❤3🤯1
➰ Кнут способен преодолеть звуковой барьер. При правильном использовании кончик кнута развивает скорость более 1100 км/ч и создаёт характерный хлопок.
Это возможно благодаря специфической конструкции кнута: поперечное сечение и масса кнута постепенно уменьшаются в направлении от ручки к кончику, и скорость кончика кнута увеличивается пропорционально его утончению. Этот вывод дают формулы скорости для бегущей волны.
Некоторые обычные кнуты, такие как кнут для быка или хлыст для скота, способны двигаться быстрее звука: кончик кнута превышает эту скорость и вызывает резкий треск — буквально звуковой удар.
🦕 Некоторые палеобиологи сообщают, что компьютерные модели их биомеханических возможностей предполагают, что некоторые длиннохвостые динозавры, такие как бронтозавр, апатозавр и диплодок, могли взмахивать хвостами со сверхзвуковой скоростью, издавая треск. Это открытие является теоретическим и оспаривается другими специалистами в этой области. #колебания #геометрия #физика #математика #math #physics #акустика #волны #звук #видеоуроки
💡 Physics.Math.Code // @physics_lib
Это возможно благодаря специфической конструкции кнута: поперечное сечение и масса кнута постепенно уменьшаются в направлении от ручки к кончику, и скорость кончика кнута увеличивается пропорционально его утончению. Этот вывод дают формулы скорости для бегущей волны.
Некоторые обычные кнуты, такие как кнут для быка или хлыст для скота, способны двигаться быстрее звука: кончик кнута превышает эту скорость и вызывает резкий треск — буквально звуковой удар.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍93🔥25❤10🤯10⚡8🆒1
Явление было обнаружено в 1934 году П. А. Черенковым при исследовании люминесценции растворов как слабое голубое свечение жидкостей под действием гамма-излучения. Объяснение эффекта смогли дать советские физики Игорь Тамм и Илья Франк в 1937 году. Они объяснили эффект равномерным и прямолинейным движением заряженных частиц среды со скоростями, превышающими скорость света в конкретной среде.
Эффект Вавилова — Черенкова используется в разных областях, например:
▪️ В медицине для лучевой терапии — помогает с высокой точностью разрушать опухоль, не повреждая здоровые клетки.
▪️ В детекторах — с помощью него удаётся определить энергию, скорость и направление элементарных частиц космических лучей.
▪️ В астрономии для исследования гамма-излучения от разных астрономических объектов.
За открытие и создание теории эффекта Вавилова — Черенкова в 1958 году И. Е. Тамм, И. М. Франк и П. А. Черенков были удостоены Нобелевской премии.
#колебания #ядерная_физика #физика #атомная_физика #свет #physics #излучение #волны #оптика #видеоуроки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102❤24🔥14⚡7❤🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
Интересный случай: когда зеркало отражает лазерный луч в сам лазер. Это называют внешней оптической обратной связью.
При этом все очень сильно зависит от природы лазера. В некоторых случаях это будет для лазера фатальным, так как мощность на выходном зеркале возрастет (иногда значительно из-за повышения оптической добротности резонатора), и лазер, исходно работающий на мощности, близкой к предельно допустимой для выходного зеркала (а часто так и бывает), это зеркало просто сожжет. Именно такая ситуация характерна для полупроводниковых лазеров, и если посветить лазерной указкой в зеркало, она этого может не пережить (в хороших лазерных указках система стабилизации выходной мощности в этой ситуации снизит ток лазера, но такие указки давно перестали делать). Однако и слабый отраженный сигнал, попадающий на лазерный диод, резко ухудшает характеристики генерируемого излучения, особенно шумы. При разработке приборов, использующих полупроводниковые лазеры, приходится тщательно бороться с оптической обратной связью — например, плоские поверхности в параллельных пучках обязательно или ставятся под небольшим углом к оси (либо под углом Брюстера), либо используются специальные компоненты, пропускающие свет в одну сторону — оптические изоляторы.
В других же случаях такая внешняя оптическая обратная связь не несет угрозы целостности лазера (например, когда речь идет о газовых и непрерывных твердотельных лазерах с относительно небольшой излучаемой мощностью), однако возникающие при этом паразитные резонаторы изменяют модовую структуру пучка, которая становится чувствительной к изменениям геометрии этих резонаторов. Это приводит к непредсказуемым колебаниям мощности и модового состава лазерного излучения, возрастанию шумов, паразитной частотной модуляции спектра, и другим нежелательным явлениям.
В импульсных лазерах, генерирующих фемтосекундные импульсы, оптическая обратная связь приводит к сильным искажениям огибающей импульсов, вплоть до появления паразитной генерации из-за усиления отраженных импульсов, вернувшихся в резонатор. #колебания #геометрия #физика #моделирование #свет #physics #излучение #волны #оптика #видеоуроки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥92👍52❤21🤯14⚡5❤🔥3💯1
Media is too big
VIEW IN TELEGRAM
▪️ Эллипс: если поместить источник света в фокусе эллипса, то после отражения от стенок эллипса все лучи сойдутся в другом фокусе, причём одновременно. Это свойство используется, например, в методе литотрипсии в медицине, где на основе эллипса удаляют камни из почек.
▪️ Гипербола: луч света, направленный на один фокус, отражается от гиперболы таким образом, что кажется, будто он исходит из другого фокуса. Это свойство используют для изготовления ламп с рассеивающим светом, например, при кварцевании помещения.
▪️ Парабола: лучи света, параллельные оси параболы, отражаются от неё и собираются в фокусе. Это свойство используется в параболических зеркалах и антеннах, а также в конструкциях прожекторов, фонарей, фар, телескопов-рефлекторов.
Таким образом, эллипс фокусирует лучи, выпущенные из одного фокуса, гипербола — лучи, направленные в один фокус, а парабола — лучи, параллельные её оси.
❓Вопрос для наших подписчиков: Подходит ли зеркало сферической формы? Сможет ли оно собрать все лучи в одно точке?
🔎 Оптика вогнутых (сферических и параболических) зеркал
📡 Задача по физике [оптике] для наших подписчиков
#колебания #ядерная_физика #физика #атомная_физика #свет #physics #излучение #волны #оптика #видеоуроки
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥127👍37❤21🤩3❤🔥1🥰1👏1🤯1
Media is too big
VIEW IN TELEGRAM
🔊 Узоры стоячих волн — фигуры Хладни 〰️
В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.
Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».
Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics
CYMATICS׃ Science Vs Music — Nigel Stanford
Воздействие звуковых волн различных частот на соль
💡 Physics.Math.Code // @physics_lib
В данном эксперименте мы наблюдаем визуализацию звука по конфигурации стоячих волн, в узлы которых попадают кристаллики соли, вырисовывая картину колебания. С увеличением частоты геометрические узоры из соли меняют свою форму и становятся более сложными.
Предлагаем посмотреть на современную реализацию эксперимента, который повторяет «открытие» немецкого ученого Эрнеста Хладни. Он исследовал влияние вибраций разных частот на механические поверхности, водя смычком вдоль края пластины (пластины Хладни), покрытой мукой, заметил как изменяется ее форма. Свои наблюдения изложил в книге «Теория Звука». В 1960-х Ханс Дженни расширил работы Хладни, используя различные жидкости и электронные усилители для генерирования различных звуковых частот. Он же заодно и ввел термин «киматика».
Если вы пропустите обычную синусоидную волну через тарелку с водой, то вы увидите узор прямо на воде. В зависимости от частоты волн будут появляться различные изображения пульсаций. Чем выше частота, тем более сложными становятся узоры. Эти формы являются повторяющимися и отнюдь не случайными. Вибрация организует материю в сложные формы, получаемые из простых и повторяющихся волн. #механика #физика #наука #physics #колебания #science #волны #physics
CYMATICS׃ Science Vs Music — Nigel Stanford
Воздействие звуковых волн различных частот на соль
💡 Physics.Math.Code // @physics_lib
❤52👍47🔥15✍2⚡2🆒2
Media is too big
VIEW IN TELEGRAM
Гость — Рыбников Юрий Степанович, «учёный», предложивший периодическую систему электроатомов Равноправной Устойчивой Симметрии (РУС) землян, методику построения электроструктур электроатомов, соединившую физику, химию, электричество, счёт РУСов (математику) в единую систему Знаний. Полностью отрицает современную теорию строения атома и множество других современных научных представлений.
Гениальная сдержанность ведущего.
#электродинамика #квантоваяфизика #физика #наука #physics #колебания #science #волны #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
11🗿169👍44🤯38✍15🤩14🔥11❤10🫡8🥰6🤓5🌚4
This media is not supported in your browser
VIEW IN TELEGRAM
Как вы считаете, возможны ли в реальной жизни колебания, представленные на анимации, когда фиксированная точка на поверхности описывает окружность (эллипс) ? При каких условиях и каких волнах такое возможно? Есть ли какие-то особенности в характере взаимодействия между частицами на данной модели? #физика #опыты #physics #мехаемка #задачи #колебания #gif
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🤯24❤17👍11🤔8🔥1😭1🙈1
This media is not supported in your browser
VIEW IN TELEGRAM
〰️ Воздействие звуковой волны 24 Гц на струю воды 🔉
Эксперимент, демонстрирующий отклонение и «замирание» струи воды под воздействием звука из динамика. «Замирание» струи воды происходит под воздействием звука из динамика, воспроизводящего синусоидальный сигнал с частотой 24 Гц. Поскольку видеокамера осуществляет запись видео точно с такой же частотой - 24 Гц, то струя воды как бы замирает. Вживую это не заметно, это стробоскопический эффект, который виден только на видеозаписи с совпадающей частотой кадров. При уменьшении частоты сигнала до 23 Гц создаётся иллюзия, словно струя воды поднимается вверх, а при 25 герц — медленно спускается вниз. #видеоуроки #механика #акустика #колебания #волны #физика
💡 Physics.Math.Code // @physics_lib
Эксперимент, демонстрирующий отклонение и «замирание» струи воды под воздействием звука из динамика. «Замирание» струи воды происходит под воздействием звука из динамика, воспроизводящего синусоидальный сигнал с частотой 24 Гц. Поскольку видеокамера осуществляет запись видео точно с такой же частотой - 24 Гц, то струя воды как бы замирает. Вживую это не заметно, это стробоскопический эффект, который виден только на видеозаписи с совпадающей частотой кадров. При уменьшении частоты сигнала до 23 Гц создаётся иллюзия, словно струя воды поднимается вверх, а при 25 герц — медленно спускается вниз. #видеоуроки #механика #акустика #колебания #волны #физика
💡 Physics.Math.Code // @physics_lib
❤67👍52🤯25🔥13👻5🤔4🆒2❤🔥1⚡1🙈1
Media is too big
VIEW IN TELEGRAM
Удивительной особенностью маятника Капицы является то, что, вопреки интуиции, перевёрнутое (вертикальное) положение маятника может быть устойчивым в случае быстрых вибраций подвеса. Хотя такое наблюдение было сделано еще в 1908 году А. Стефенсоном, в течение длительного времени не имелось математического объяснения причин такой устойчивости. П. Л. Капица экспериментально исследовал такой маятник, а также построил теорию динамической стабилизации, разделяя движение на «быстрые» и «медленные» переменные и введя эффективный потенциал. Работа П. Л. Капицы, опубликованная в 1951 году, открыла новое направление в физике — вибрационную механику. Метод П. Л. Капицы используется для описания колебательных процессов в атомной физике, физике плазмы, кибернетической физике. Эффективный потенциал, описывающий «медленную составляющую движения», описывается в томе «механика» курса теоретической физики Л. Д. Ландау.
Маятник Капицы интересен ещё и тем, что в такой простой системе можно наблюдать параметрические резонансы, когда нижнее положение равновесия не является больше устойчивым и амплитуда малых отклонений маятника нарастает со временем. Также, при большой амплитуде вынуждающих колебаний в системе могут реализовываться хаотические режимы, когда в сечении Пуанкаре наблюдаются странные аттракторы. #механика #кинематика #колебания #опыты #физика #механика #physics #science #теория_колебаний #изобретения
📚 Курс теоретической механики. В 2 томах [1979] Бутенин Н.В., Лунц Я.Л., Меркин Д.Р.
📚 Подбор книг по теории колебаний, волнам, резонансам [около 90 книг]
📚 Теоретическая физика (в 10 томах) [2001 - 2005] Ландау, Лифшиц
⚠️ Прежде чем читать 10 томов Ландау
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍51❤31❤🔥9🔥7🤯3⚡1👏1
This media is not supported in your browser
VIEW IN TELEGRAM
#механика #кинематика #колебания #опыты #физика #механика #physics #science #теория_колебаний #изобретения
〰️ Звуковой резонанс
📚 Курс теоретической механики. В 2 томах [1979] Бутенин Н.В., Лунц Я.Л., Меркин Д.Р.
📚 Подбор книг по теории колебаний, волнам, резонансам [около 90 книг]
📚 Теоретическая физика (в 10 томах) [2001 - 2005] Ландау, Лифшиц
⚠️ Прежде чем читать 10 томов Ландау
🔩 Гаситель вибрации
🌀 Резонанс: частот имеет значение
⚙️ Маятник Капицы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥37👍25❤12❤🔥4🤷♂3😱2🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
🔊 Ультразвуковая пластина (мембрана, пьезоизлучатель) — ключевой элемент увлажнителя воздуха. Она преобразует обычную воду в мельчайший туман, который увлажняет воздух в помещении.
Принцип действия: на пластину подают высокочастотное напряжение. Под его воздействием мембрана колеблется, в водяном слое появляются волны пониженного и повышенного давления, чередующиеся между собой. В зоне низкого давления жидкость «вскипает» при невысокой температуре, происходит выброс водяного аэрозоля.
▪️Генерация ультразвуковых волн (обратный пьезоэлектрический эффект). На пластину подают электрические колебания от генератора, и под их действием она расширяется и сжимается по толщине. Это вызывает колебания, которые излучают ультразвуковые волны.
▪️Приём ультразвуковых волн (прямой пьезоэлектрический эффект). Под действием ультразвуковой волны пластина испытывает сжатия и растяжения, и в результате прямого пьезоэффекта между обкладками возникает электрическое напряжение, пропорциональное акустическому давлению волны.
Для генерации продольных колебаний используют деформацию растяжения-сжатия, для генерации поперечных — сдвиговую деформацию. Преобразователь с такой пластиной прижимают к поверхности изделия через слой контактной жидкости, в результате в изделии возникают продольные волны, направленные под прямым углом к поверхности.
Пьезоэлектрический эффект — явление, при котором под воздействием механического напряжения или деформации в кристалле возникает электрическая поляризация, величина и знак которой зависят от направления и значения приложенного напряжения. Собственная частота колебаний в пьезопластине пропорциональна скорости звука в материале пластины и её толщине. Чем тоньше пластина, тем выше её собственная частота. На практике под влиянием конструктивных элементов пьезоэлектрического преобразователя, непосредственно контактирующих с пьезопластиной, собственная частота немного изменяется. Частоту, которую возбуждает преобразователь, называют рабочей частотой. #физика #опыты #колебания #волны #пьезодинамика #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
Принцип действия: на пластину подают высокочастотное напряжение. Под его воздействием мембрана колеблется, в водяном слое появляются волны пониженного и повышенного давления, чередующиеся между собой. В зоне низкого давления жидкость «вскипает» при невысокой температуре, происходит выброс водяного аэрозоля.
▪️Генерация ультразвуковых волн (обратный пьезоэлектрический эффект). На пластину подают электрические колебания от генератора, и под их действием она расширяется и сжимается по толщине. Это вызывает колебания, которые излучают ультразвуковые волны.
▪️Приём ультразвуковых волн (прямой пьезоэлектрический эффект). Под действием ультразвуковой волны пластина испытывает сжатия и растяжения, и в результате прямого пьезоэффекта между обкладками возникает электрическое напряжение, пропорциональное акустическому давлению волны.
Для генерации продольных колебаний используют деформацию растяжения-сжатия, для генерации поперечных — сдвиговую деформацию. Преобразователь с такой пластиной прижимают к поверхности изделия через слой контактной жидкости, в результате в изделии возникают продольные волны, направленные под прямым углом к поверхности.
Пьезоэлектрический эффект — явление, при котором под воздействием механического напряжения или деформации в кристалле возникает электрическая поляризация, величина и знак которой зависят от направления и значения приложенного напряжения. Собственная частота колебаний в пьезопластине пропорциональна скорости звука в материале пластины и её толщине. Чем тоньше пластина, тем выше её собственная частота. На практике под влиянием конструктивных элементов пьезоэлектрического преобразователя, непосредственно контактирующих с пьезопластиной, собственная частота немного изменяется. Частоту, которую возбуждает преобразователь, называют рабочей частотой. #физика #опыты #колебания #волны #пьезодинамика #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
👍95❤41🔥25🤯4⚡2
Media is too big
VIEW IN TELEGRAM
➰ Гармонограф (Harmonograph) — это механическое устройство, которое использует маятники для создания геометрического изображения. Создаваемые чертежи обычно представляют собой кривые Лиссажу или связанные с ними чертежи большей сложности. Устройства, которые начали появляться в середине 19 века и достигли пика популярности в 1890-х годах, нельзя однозначно отнести к одному человеку, хотя Хью Блэкберн, профессор математики в Университете Глазго, обычно считается официальным изобретателем.
Простой, так называемый "боковой" гармонограф использует два маятника для управления движением пера относительно поверхности для рисования. Один маятник перемещает перо взад и вперед вдоль одной оси, а другой маятник перемещает поверхность для рисования взад и вперед вдоль перпендикулярной оси. Изменяя частоту и фазу маятников относительно друг друга, создаются различные узоры. Даже простой гармонограф, как описано, может создавать эллипсы, спирали, восьмерки и другие фигуры Лиссажу.
Более сложные гармонографы включают в себя три или более маятников или соединенных маятников вместе (например, подвешивание одного маятника к другому), или включают вращательное движение, при котором один или несколько маятников установлены на подвесках для обеспечения движения в любом направлении. #gif #physics #физика #механика #колебания
💡 Physics.Math.Code // @physics_lib
Простой, так называемый "боковой" гармонограф использует два маятника для управления движением пера относительно поверхности для рисования. Один маятник перемещает перо взад и вперед вдоль одной оси, а другой маятник перемещает поверхность для рисования взад и вперед вдоль перпендикулярной оси. Изменяя частоту и фазу маятников относительно друг друга, создаются различные узоры. Даже простой гармонограф, как описано, может создавать эллипсы, спирали, восьмерки и другие фигуры Лиссажу.
Более сложные гармонографы включают в себя три или более маятников или соединенных маятников вместе (например, подвешивание одного маятника к другому), или включают вращательное движение, при котором один или несколько маятников установлены на подвесках для обеспечения движения в любом направлении. #gif #physics #физика #механика #колебания
💡 Physics.Math.Code // @physics_lib
👍53❤17🔥10✍1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🤔 В чем секрет этого супер-ножа? Физика процесса 🔊
Обычный нож режет за счет давления и острой кромки. Ультразвуковой — добавляет к этому мощнейшую высокочастотную вибрацию.
▪️ 1. Невидимое движение: Лезвие ножа соединяется с специальным устройством — пьезоэлектрическим или магнитострикционным преобразователем. Оно создает механические колебания с ультразвуковой частотой — от 20 000 до 50 000 раз в секунду! Глаз этого движения не видит, амплитуда колебаний лезвия очень мала (буквально микрон).
▪️ 2. Микроудары, а не давление: Именно эти сверхбыстрые колебания — главный секрет. Лезвие не просто давит на материал, а наносит по нему десятки тысяч микроскопических ударов в секунду.
▫️ 1. Режим без абразив — Резка за счет ультразвуковой УСТАЛОСТИ материала.
➖ Физика процесса: Лезвие с огромной частотой (те же 20 000+ Гц) бьет по одной и той же точке на материале. Каждый удар — микроскопический. Но их десятки тысяч в секунду.
➖ Эффект «усталости»: В металле (стали) не успевают распространяться упругие волны. Энергия удара концентрируется в крошечной зоне, вызывая локальный нагрев и, что главное, мгновенное усталостное разрушение кристаллической решетки. Материал в точке контакта просто не выдерживает такого темпа и трескается.
➖ Аналогия: Если вы будете сгибать скрепку туда-сюда в одном месте, она переломится от усталости металла. Ультразвуковой нож делает это с невообразимой скоростью.
▫️ 2. Классический режим (с абразивом) — это резка за счет микроскалывания.
➖ Этот способ более универсален и эффективен для очень твердых и хрупких материалов (стекло, керамика, композиты). Абразивные частицы делают основную работу.
Эффективность: Резка за счет чистой усталости металла часто менее эффективна и медленнее, чем абразивный метод. Она требует больше энергии и может сильнее изнашивать само лезвие ножа.
Материал: Для резки, например, стекла или карбида вольфрама только ультразвуком без абразива потребовались бы титанические усилия. Абразив (как алмазная пыль) кардинально ускоряет процесс.
Качество края: Резка ультразвуковой усталостью может оставлять более заметные следы деформации на краях по сравнению с чистым абразивным скалыванием.
Получается, современный мощный ультразвуковой резак — это инструмент с двумя основными режимами:
1. «Чистая» резка (без абразива): Хороша для металлов, где важно избежать загрязнения абразивом. Основана на усталостном разрушении.
2. Абразивная резка (с суспензией): Идеальна для твердых и хрупких материалов. Быстрее и универсальнее. Основана на микроскалывании.
#колебания #пьезоэффект #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
Обычный нож режет за счет давления и острой кромки. Ультразвуковой — добавляет к этому мощнейшую высокочастотную вибрацию.
▪️ 1. Невидимое движение: Лезвие ножа соединяется с специальным устройством — пьезоэлектрическим или магнитострикционным преобразователем. Оно создает механические колебания с ультразвуковой частотой — от 20 000 до 50 000 раз в секунду! Глаз этого движения не видит, амплитуда колебаний лезвия очень мала (буквально микрон).
▪️ 2. Микроудары, а не давление: Именно эти сверхбыстрые колебания — главный секрет. Лезвие не просто давит на материал, а наносит по нему десятки тысяч микроскопических ударов в секунду.
▫️ 1. Режим без абразив — Резка за счет ультразвуковой УСТАЛОСТИ материала.
➖ Физика процесса: Лезвие с огромной частотой (те же 20 000+ Гц) бьет по одной и той же точке на материале. Каждый удар — микроскопический. Но их десятки тысяч в секунду.
➖ Эффект «усталости»: В металле (стали) не успевают распространяться упругие волны. Энергия удара концентрируется в крошечной зоне, вызывая локальный нагрев и, что главное, мгновенное усталостное разрушение кристаллической решетки. Материал в точке контакта просто не выдерживает такого темпа и трескается.
➖ Аналогия: Если вы будете сгибать скрепку туда-сюда в одном месте, она переломится от усталости металла. Ультразвуковой нож делает это с невообразимой скоростью.
▫️ 2. Классический режим (с абразивом) — это резка за счет микроскалывания.
➖ Этот способ более универсален и эффективен для очень твердых и хрупких материалов (стекло, керамика, композиты). Абразивные частицы делают основную работу.
Эффективность: Резка за счет чистой усталости металла часто менее эффективна и медленнее, чем абразивный метод. Она требует больше энергии и может сильнее изнашивать само лезвие ножа.
Материал: Для резки, например, стекла или карбида вольфрама только ультразвуком без абразива потребовались бы титанические усилия. Абразив (как алмазная пыль) кардинально ускоряет процесс.
Качество края: Резка ультразвуковой усталостью может оставлять более заметные следы деформации на краях по сравнению с чистым абразивным скалыванием.
Получается, современный мощный ультразвуковой резак — это инструмент с двумя основными режимами:
1. «Чистая» резка (без абразива): Хороша для металлов, где важно избежать загрязнения абразивом. Основана на усталостном разрушении.
2. Абразивная резка (с суспензией): Идеальна для твердых и хрупких материалов. Быстрее и универсальнее. Основана на микроскалывании.
#колебания #пьезоэффект #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
🔥78❤33👍18⚡8🤔2🤯2🙈2🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Сравнение скорости движения пули и скорости разрушения стекла
Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics
📚 Механика разрушений [12 книг]
⛓️ ⚙️ Механика разрушения материалов (видео)
💡 Physics.Math.Code // @physics_lib
Когда разбивается стекло, трещина распространяется со скоростью 4828 км/ч. Такую скорость невозможно заметить обычным взглядом, только с помощью высокоскоростной съёмки. Стекло разбивается со скоростью несколько тысяч метров в секунду. Пуля, выпущенная из автомата, например, АК-47 или винтовки НАТО G3, имеет меньшую скорость – до тысячи метров в секунду. #видеоуроки #механика #разрушения #колебания #волны #физика #physics
📚 Механика разрушений [12 книг]
⛓️ ⚙️ Механика разрушения материалов (видео)
💡 Physics.Math.Code // @physics_lib
4👍45🔥23❤4🤯2⚡1