This media is not supported in your browser
VIEW IN TELEGRAM
🔊 Ультразвуковая пластина (мембрана, пьезоизлучатель) — ключевой элемент увлажнителя воздуха. Она преобразует обычную воду в мельчайший туман, который увлажняет воздух в помещении.
Принцип действия: на пластину подают высокочастотное напряжение. Под его воздействием мембрана колеблется, в водяном слое появляются волны пониженного и повышенного давления, чередующиеся между собой. В зоне низкого давления жидкость «вскипает» при невысокой температуре, происходит выброс водяного аэрозоля.
▪️Генерация ультразвуковых волн (обратный пьезоэлектрический эффект). На пластину подают электрические колебания от генератора, и под их действием она расширяется и сжимается по толщине. Это вызывает колебания, которые излучают ультразвуковые волны.
▪️Приём ультразвуковых волн (прямой пьезоэлектрический эффект). Под действием ультразвуковой волны пластина испытывает сжатия и растяжения, и в результате прямого пьезоэффекта между обкладками возникает электрическое напряжение, пропорциональное акустическому давлению волны.
Для генерации продольных колебаний используют деформацию растяжения-сжатия, для генерации поперечных — сдвиговую деформацию. Преобразователь с такой пластиной прижимают к поверхности изделия через слой контактной жидкости, в результате в изделии возникают продольные волны, направленные под прямым углом к поверхности.
Пьезоэлектрический эффект — явление, при котором под воздействием механического напряжения или деформации в кристалле возникает электрическая поляризация, величина и знак которой зависят от направления и значения приложенного напряжения. Собственная частота колебаний в пьезопластине пропорциональна скорости звука в материале пластины и её толщине. Чем тоньше пластина, тем выше её собственная частота. На практике под влиянием конструктивных элементов пьезоэлектрического преобразователя, непосредственно контактирующих с пьезопластиной, собственная частота немного изменяется. Частоту, которую возбуждает преобразователь, называют рабочей частотой. #физика #опыты #колебания #волны #пьезодинамика #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
Принцип действия: на пластину подают высокочастотное напряжение. Под его воздействием мембрана колеблется, в водяном слое появляются волны пониженного и повышенного давления, чередующиеся между собой. В зоне низкого давления жидкость «вскипает» при невысокой температуре, происходит выброс водяного аэрозоля.
▪️Генерация ультразвуковых волн (обратный пьезоэлектрический эффект). На пластину подают электрические колебания от генератора, и под их действием она расширяется и сжимается по толщине. Это вызывает колебания, которые излучают ультразвуковые волны.
▪️Приём ультразвуковых волн (прямой пьезоэлектрический эффект). Под действием ультразвуковой волны пластина испытывает сжатия и растяжения, и в результате прямого пьезоэффекта между обкладками возникает электрическое напряжение, пропорциональное акустическому давлению волны.
Для генерации продольных колебаний используют деформацию растяжения-сжатия, для генерации поперечных — сдвиговую деформацию. Преобразователь с такой пластиной прижимают к поверхности изделия через слой контактной жидкости, в результате в изделии возникают продольные волны, направленные под прямым углом к поверхности.
Пьезоэлектрический эффект — явление, при котором под воздействием механического напряжения или деформации в кристалле возникает электрическая поляризация, величина и знак которой зависят от направления и значения приложенного напряжения. Собственная частота колебаний в пьезопластине пропорциональна скорости звука в материале пластины и её толщине. Чем тоньше пластина, тем выше её собственная частота. На практике под влиянием конструктивных элементов пьезоэлектрического преобразователя, непосредственно контактирующих с пьезопластиной, собственная частота немного изменяется. Частоту, которую возбуждает преобразователь, называют рабочей частотой. #физика #опыты #колебания #волны #пьезодинамика #physics #gif #гидродинамика
💡 Physics.Math.Code // @physics_lib
👍95❤41🔥25🤯4⚡2
Media is too big
VIEW IN TELEGRAM
Самой яркой и наглядной демонстрацией эффекта является резка (фактически — откалывание) стекла обыкновенными ножницами в воде. Таким образом получится вырезать из стекла практически любую фигуру. В физикеэффект Ребиндера — это снижение твёрдости и пластичности материала, в частности металлов, под воздействием поверхностно-активной плёнки. Эффект назван в честь советского учёного Петра Александровича Ребиндера, который впервые описал этот эффект в 1928 году. Предлагаемое объяснение этого эффекта заключается в разрушении поверхностных оксидных плёнок и снижении поверхностной энергии с помощью поверхностно-активных веществ. Этот эффект особенно важен при механической обработке, поскольку смазочные материалы снижают силу резания.
Эффект Ребиндера
#физика #адсорбция #physics #science #химия #видеоуроки #наука #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍96🔥35❤14🤔5❤🔥4✍2🤯2😱2
This media is not supported in your browser
VIEW IN TELEGRAM
🔨 Резонанс камертонов
Звуковой резонанс — это резонанс, вызванный звуковыми волнами. Это явление, при котором акустические системы усиливают звуковые волны. При этом частота этих волн совпадает с резонансной частотой системы. Акустический тип резонирования имеет основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.
Самым простым примером для понимания звукового резонанса является наблюдение за взаимодействием двух камертонов:
▪️ Подготовьте два камертона с совпадающими собственными частотами и поставьте их рядом, повернув их друг к другу отверстиями.
▪️ Удар резиновым молотком по одному из камертонов приводит его в колебание. Если затем приглушить его, соседний камертон издаст звук, отзывающийся на колебания первого.
Это феномен является следствием того, что волны, образованные первым камертоном, доходят до второго, возбуждая в нем вынужденные колебания. В итоге одинаковая частота камертонов приводит к резонансу.
Акустический резонанс — важный фактор, который учитывается музыкальными мастерами при создании инструментов. Звуковая волна ударяет по объекту с частотой, соответствующей резонансной части инструмента, что приводит к резонансу. В струнных инструментах резонаторами выступают деки, усиливающие звуки, которые издают струны. Звучание и тембр зависят не только он формы резонатора, но и от качества и вида древесины и даже состава лака, которым покрывают готовый инструмент. #gif #механика #физика #physics #опыты #резонанс
💡 Physics.Math.Code // @physics_lib
Звуковой резонанс — это резонанс, вызванный звуковыми волнами. Это явление, при котором акустические системы усиливают звуковые волны. При этом частота этих волн совпадает с резонансной частотой системы. Акустический тип резонирования имеет основную резонансную частоту, которая зависит от длины, массы и силы натяжения струн.
Самым простым примером для понимания звукового резонанса является наблюдение за взаимодействием двух камертонов:
▪️ Подготовьте два камертона с совпадающими собственными частотами и поставьте их рядом, повернув их друг к другу отверстиями.
▪️ Удар резиновым молотком по одному из камертонов приводит его в колебание. Если затем приглушить его, соседний камертон издаст звук, отзывающийся на колебания первого.
Это феномен является следствием того, что волны, образованные первым камертоном, доходят до второго, возбуждая в нем вынужденные колебания. В итоге одинаковая частота камертонов приводит к резонансу.
Акустический резонанс — важный фактор, который учитывается музыкальными мастерами при создании инструментов. Звуковая волна ударяет по объекту с частотой, соответствующей резонансной части инструмента, что приводит к резонансу. В струнных инструментах резонаторами выступают деки, усиливающие звуки, которые издают струны. Звучание и тембр зависят не только он формы резонатора, но и от качества и вида древесины и даже состава лака, которым покрывают готовый инструмент. #gif #механика #физика #physics #опыты #резонанс
💡 Physics.Math.Code // @physics_lib
👍36❤23🔥16🤩3
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнитная аномалия — разные направления вращения ⏳
Металлические шарики вращаются против часовой стрелки, потому что они пытаются "догнать" смещающееся магнитное поле, но из-за инерции (в данном случае магнитной инерции, вызванной вихревыми токами) они всегда отстают. Чтобы уменьшить это отставание, они начинают вращаться в противоположную сторону, что с точки зрения неподвижного наблюдателя выглядит как вращение против часовой стрелки. Это явление абсолютно аналогично работе беличьей клетки в асинхронном электродвигателе.
1. Вращающееся магнитное поле: Ваши 8 магнитов с чередующимися полюсами, вращаясь по часовой стрелке, создают мощное вращающееся магнитное поле. Представьте, что это поле — это невидимый "буравчик", который ввинчивается в пространство над диском.
2. Вихревые токи (токи Фуко): Когда это вращающееся магнитное поле проходит под металлическим шариком, оно наводит в нем электрические токи. Эти токи циркулируют внутри объема шарика, поэтому их называют вихревыми.
3. Взаимодействие токов и поля (Закон Ленца): Согласно закону электромагнитной индукции и правилу Ленца, вихревые токи всегда имеют такое направление, чтобы противодействовать причине, их вызвавшей. Причина — это изменение магнитного поля, а именно его смещение относительно шарика.
4. "Погоня" с отставанием (Принцип асинхронности):
▪️ Шарик — это не магнит, у него нет собственных полюсов, которые могли бы сразу зафиксироваться напротив полюсов вращающегося диска. Ему нужно время, чтобы в нем навелись токи, которые, в свою очередь, создадут собственное магнитное поле.
▪️ Из-за этого запаздывания (магнитной инерции) поле, созданное вихревыми токами в шарике, всегда отстает от внешнего поля диска.
▪️ Вращающееся поле диска как бы "убегает" от шарика по часовой стрелке.
▪️ Чтобы уменьшить это отставание (т.е. уменьшить скорость изменения поля относительно себя), шарик стремится двигаться в том же направлении, что и поле. Он пытается "догнать" убегающий магнитный поток.
5. Почему направление обратное? Представьте, что вы стоите на эскалаторе, который едет вниз. Чтобы остаться на одном уровне относительно неподвижного пола, вам нужно идти вверх по эскалатору. Эскалатор — это магнитное поле, движущееся по часовой стрелке. Шарик — это вы. Чтобы "остаться на месте" относительно убегающего поля (то есть не отставать), шарик должен бежать по "эскалатору" против его хода. Для внешнего наблюдателя, смотрящего на неподвижный пластиковый лист, это выглядит как движение шарика против часовой стрелки.
Выводы: Частота вращения двигателя определяет скорость "убегания" поля и, следовательно, скорость вращения шарика. Дело в запаздывании намагниченности металла. "Запаздывание намагниченности" — это и есть физическая суть явления, обусловленная возникновением вихревых токов и индуктивностью материала. #физика #электродинамика #наука #опыты #physics #science #магнетизм
💡 Physics.Math.Code // @physics_lib
Металлические шарики вращаются против часовой стрелки, потому что они пытаются "догнать" смещающееся магнитное поле, но из-за инерции (в данном случае магнитной инерции, вызванной вихревыми токами) они всегда отстают. Чтобы уменьшить это отставание, они начинают вращаться в противоположную сторону, что с точки зрения неподвижного наблюдателя выглядит как вращение против часовой стрелки. Это явление абсолютно аналогично работе беличьей клетки в асинхронном электродвигателе.
1. Вращающееся магнитное поле: Ваши 8 магнитов с чередующимися полюсами, вращаясь по часовой стрелке, создают мощное вращающееся магнитное поле. Представьте, что это поле — это невидимый "буравчик", который ввинчивается в пространство над диском.
2. Вихревые токи (токи Фуко): Когда это вращающееся магнитное поле проходит под металлическим шариком, оно наводит в нем электрические токи. Эти токи циркулируют внутри объема шарика, поэтому их называют вихревыми.
3. Взаимодействие токов и поля (Закон Ленца): Согласно закону электромагнитной индукции и правилу Ленца, вихревые токи всегда имеют такое направление, чтобы противодействовать причине, их вызвавшей. Причина — это изменение магнитного поля, а именно его смещение относительно шарика.
4. "Погоня" с отставанием (Принцип асинхронности):
▪️ Шарик — это не магнит, у него нет собственных полюсов, которые могли бы сразу зафиксироваться напротив полюсов вращающегося диска. Ему нужно время, чтобы в нем навелись токи, которые, в свою очередь, создадут собственное магнитное поле.
▪️ Из-за этого запаздывания (магнитной инерции) поле, созданное вихревыми токами в шарике, всегда отстает от внешнего поля диска.
▪️ Вращающееся поле диска как бы "убегает" от шарика по часовой стрелке.
▪️ Чтобы уменьшить это отставание (т.е. уменьшить скорость изменения поля относительно себя), шарик стремится двигаться в том же направлении, что и поле. Он пытается "догнать" убегающий магнитный поток.
5. Почему направление обратное? Представьте, что вы стоите на эскалаторе, который едет вниз. Чтобы остаться на одном уровне относительно неподвижного пола, вам нужно идти вверх по эскалатору. Эскалатор — это магнитное поле, движущееся по часовой стрелке. Шарик — это вы. Чтобы "остаться на месте" относительно убегающего поля (то есть не отставать), шарик должен бежать по "эскалатору" против его хода. Для внешнего наблюдателя, смотрящего на неподвижный пластиковый лист, это выглядит как движение шарика против часовой стрелки.
Выводы: Частота вращения двигателя определяет скорость "убегания" поля и, следовательно, скорость вращения шарика. Дело в запаздывании намагниченности металла. "Запаздывание намагниченности" — это и есть физическая суть явления, обусловленная возникновением вихревых токов и индуктивностью материала. #физика #электродинамика #наука #опыты #physics #science #магнетизм
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍52❤25🔥9🤯4⚡2😱2🤨1
Media is too big
VIEW IN TELEGRAM
🧲 Хранитель магнитного поля — опыт по физике
Разница в том, как мы прикладываем магнит (к соединенным или разъединенным деталям), кардинально меняет результат из-за понятия магнитной цепи.
▪️ К разъединенным деталям: Каждая деталь намагничивается отдельно и слабее.
▪️К соединенным деталям: Детали вместе образуют единый "магнитный проводник", намагничиваются сильнее и равномерно по всей длине.
Случай 1: Магнит прикладывают к разъединенным деталям.
Что делаем: Берем первый стержень, прикладываем к нему магнит на несколько секунд. Убираем магнит. Затем берем второй стержень и повторяем процедуру.
Что происходит внутри:
— Магнитное поле магнита воздействует на каждый стержень по отдельности.
— В области стержня, непосредственно контактирующей с магнитом, магнитные домены (крошечные области, похожие на маленькие магнитики) поворачиваются, выстраиваясь вдоль силовых линий поля.
— Однако, поскольку стержень не замкнут, силовым линиям трудно пройти через весь его объем. Они "выталкиваются" из стержня, создавая разомкнутую магнитную цепь.
Результат: Каждый стержень становится слабым постоянным магнитом. Намагниченность будет неравномерной: сильнее всего у того конца, куда прикладывали магнит, и слабее к противоположному концу. Почему слабой? Большая часть магнитной энергии тратится не на намагничивание, а на создание магнитного поля в окружающем воздухе, который имеет очень высокое магнитное сопротивление.
Случай 2: Магнит прикладывают к соединенным деталям.
Что делаем: Сначала плотно соединяем два стержня торцами, чтобы получился один длинный стержень. Затем прикладываем магнит к месту стыка или к одному из концов собранной конструкции.
Что происходит внутри:
— Соединенные стержни образуют замкнутую магнитную цепь (или почти замкнутую, если она длинная). Сталь является хорошим "проводником" для магнитного потока (имеет низкое магнитное сопротивление).
— Силовые линии поля магнита теперь легко "протекают" по всему контуру из стали, почти не выходя в воздух.
— Это эффективное поле заставляет магнитные домены выстраиваться по всей длине конструкции.
Результат: Вся конструкция из двух стержней намагничивается сильно и равномерно. После удаления магнита стержни остаются сильными постоянными магнитами. Если их разъединить, то каждый стержень будет иметь четко выраженные северный и южный полюса на своих концах.
Если вы хотите сильно намагнитить металлические детали (например, отвертку или стальной прут), всегда делайте это, когда они образуют замкнутый контур или длинный непрерывный "стержень". Приложите магнит к середине или к концу этого контура. Это самый эффективный способ. #физика #электродинамика #наука #опыты #physics #science #магнетизм
💡 Physics.Math.Code // @physics_lib
Разница в том, как мы прикладываем магнит (к соединенным или разъединенным деталям), кардинально меняет результат из-за понятия магнитной цепи.
▪️ К разъединенным деталям: Каждая деталь намагничивается отдельно и слабее.
▪️К соединенным деталям: Детали вместе образуют единый "магнитный проводник", намагничиваются сильнее и равномерно по всей длине.
Случай 1: Магнит прикладывают к разъединенным деталям.
Что делаем: Берем первый стержень, прикладываем к нему магнит на несколько секунд. Убираем магнит. Затем берем второй стержень и повторяем процедуру.
Что происходит внутри:
— Магнитное поле магнита воздействует на каждый стержень по отдельности.
— В области стержня, непосредственно контактирующей с магнитом, магнитные домены (крошечные области, похожие на маленькие магнитики) поворачиваются, выстраиваясь вдоль силовых линий поля.
— Однако, поскольку стержень не замкнут, силовым линиям трудно пройти через весь его объем. Они "выталкиваются" из стержня, создавая разомкнутую магнитную цепь.
Результат: Каждый стержень становится слабым постоянным магнитом. Намагниченность будет неравномерной: сильнее всего у того конца, куда прикладывали магнит, и слабее к противоположному концу. Почему слабой? Большая часть магнитной энергии тратится не на намагничивание, а на создание магнитного поля в окружающем воздухе, который имеет очень высокое магнитное сопротивление.
Случай 2: Магнит прикладывают к соединенным деталям.
Что делаем: Сначала плотно соединяем два стержня торцами, чтобы получился один длинный стержень. Затем прикладываем магнит к месту стыка или к одному из концов собранной конструкции.
Что происходит внутри:
— Соединенные стержни образуют замкнутую магнитную цепь (или почти замкнутую, если она длинная). Сталь является хорошим "проводником" для магнитного потока (имеет низкое магнитное сопротивление).
— Силовые линии поля магнита теперь легко "протекают" по всему контуру из стали, почти не выходя в воздух.
— Это эффективное поле заставляет магнитные домены выстраиваться по всей длине конструкции.
Результат: Вся конструкция из двух стержней намагничивается сильно и равномерно. После удаления магнита стержни остаются сильными постоянными магнитами. Если их разъединить, то каждый стержень будет иметь четко выраженные северный и южный полюса на своих концах.
Если вы хотите сильно намагнитить металлические детали (например, отвертку или стальной прут), всегда делайте это, когда они образуют замкнутый контур или длинный непрерывный "стержень". Приложите магнит к середине или к концу этого контура. Это самый эффективный способ. #физика #электродинамика #наука #опыты #physics #science #магнетизм
💡 Physics.Math.Code // @physics_lib
👍56❤24🔥7⚡2🤔2🤩2
🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
🔥52👍28❤17❤🔥2🆒2👏1🤯1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
Сегодня поговорим о явлении, которое выглядит как чистая магия: положили холодную сковородку на холодную же плиту, включили — и она мгновенно раскаляется. А под ней... ничего нет! Ни огня, ни тлеющих углей. Это индукционный нагрев.
Как это работает? Если коротко: Под стеклянной поверхностью плиты спрятана катушка из меди. Когда через нее пропускают электрический ток, она создает мощное, высокочастотное, переменное магнитное поле.
Когда вы ставите на плиту посуду из ферромагнитного материала (чугун, нержавейка), это магнитное поле пронизывает ее. Но оно не просто проходит насквозь — оно заставляет электроны в металле метаться, создавая внутри сковороды или кастрюли вихревые токи (токи Фуко). Эти токи испытывают сопротивление материала, и именно эта энергия сопротивления превращается в тепло. Металл нагревает сам себя изнутри!
Кстати, попробуйте положить на работающую индукционку лист бумаги — он не загорится. А вот если поднести монетку — она станет горячей. Плита «чувствует» только определенные материалы.
Магия магией, но у всего есть первооткрыватели. История индукционного нагрева начинается не в XXI веке, и даже не в XX, а в далеком 1824 году!
▪️ 1. Первооткрыватель: Франсуа Араго 🧭
Французский физик и астроном обнаружил удивительный эффект: если вращать медный диск под намагниченной стрелкой, стрелка тоже начинает вращаться вслед за диском. Это явление назвали «вращение Араго». Суть была в том, что движущееся магнитное поле наводило в диске вихревые токи, которые, в свою очередь, создавали свое поле. Но до нагрева тогда не додумались.
▪️ 2. Теоретик: Майкл Фарадей 🧲
В 1831 году великий Фарадей открыл закон электромагнитной индукции, дав теоретическое объяснение явлениям, подобным опыту Араго. Он доказал, что изменяющееся магнитное поле порождает в проводнике электрический ток.
▪️ 3. Тот, кто дал имя: Леон Фуко ⚡️
А вот имя «вихревые токи» (или «токи Фуко») дал им в 1855 году другой француз — Леон Фуко (да-да, тот самый, что измерил скорость света и придумал маятник). Фуко как раз и обнаружил, что эти токи разогревают металл. Он проводил опыты, раскачивая металлический маятник в мощном магнитном поле, и заметил, что маятник быстро останавливается и нагревается — его энергия движения превращалась в тепло благодаря тем самым вихревым токам.
Поначалу эти токи были головной болью для инженеров — в электромоторах и трансформаторах они вызывали бесполезный и вредный нагрев. С ними боролись, собирая сердечники из изолированных пластин. Но потом человек подумал: «А если эту проблему превратить в решение?»
Что в итоге? Сначала индукционный нагрев нашел применение в металлургии (плавка металлов без примесей от топлива), закалке стали, а потом добрался и до наших кухонь. Получается, что ваша суперсовременная индукционная плита — это прямое воплощение открытий, сделанных почти 200 лет назад гениями, которые просто смотрели на мир с любопытством. Вот так фундаментальная наука спустя века меняет нашу повседневную жизнью. #электродинамика #магнетизм #физика #physics #science #опыты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍122❤45🔥32✍4🤩2⚡1👏1
This media is not supported in your browser
VIEW IN TELEGRAM
🤔 В чем секрет этого супер-ножа? Физика процесса 🔊
Обычный нож режет за счет давления и острой кромки. Ультразвуковой — добавляет к этому мощнейшую высокочастотную вибрацию.
▪️ 1. Невидимое движение: Лезвие ножа соединяется с специальным устройством — пьезоэлектрическим или магнитострикционным преобразователем. Оно создает механические колебания с ультразвуковой частотой — от 20 000 до 50 000 раз в секунду! Глаз этого движения не видит, амплитуда колебаний лезвия очень мала (буквально микрон).
▪️ 2. Микроудары, а не давление: Именно эти сверхбыстрые колебания — главный секрет. Лезвие не просто давит на материал, а наносит по нему десятки тысяч микроскопических ударов в секунду.
▫️ 1. Режим без абразив — Резка за счет ультразвуковой УСТАЛОСТИ материала.
➖ Физика процесса: Лезвие с огромной частотой (те же 20 000+ Гц) бьет по одной и той же точке на материале. Каждый удар — микроскопический. Но их десятки тысяч в секунду.
➖ Эффект «усталости»: В металле (стали) не успевают распространяться упругие волны. Энергия удара концентрируется в крошечной зоне, вызывая локальный нагрев и, что главное, мгновенное усталостное разрушение кристаллической решетки. Материал в точке контакта просто не выдерживает такого темпа и трескается.
➖ Аналогия: Если вы будете сгибать скрепку туда-сюда в одном месте, она переломится от усталости металла. Ультразвуковой нож делает это с невообразимой скоростью.
▫️ 2. Классический режим (с абразивом) — это резка за счет микроскалывания.
➖ Этот способ более универсален и эффективен для очень твердых и хрупких материалов (стекло, керамика, композиты). Абразивные частицы делают основную работу.
Эффективность: Резка за счет чистой усталости металла часто менее эффективна и медленнее, чем абразивный метод. Она требует больше энергии и может сильнее изнашивать само лезвие ножа.
Материал: Для резки, например, стекла или карбида вольфрама только ультразвуком без абразива потребовались бы титанические усилия. Абразив (как алмазная пыль) кардинально ускоряет процесс.
Качество края: Резка ультразвуковой усталостью может оставлять более заметные следы деформации на краях по сравнению с чистым абразивным скалыванием.
Получается, современный мощный ультразвуковой резак — это инструмент с двумя основными режимами:
1. «Чистая» резка (без абразива): Хороша для металлов, где важно избежать загрязнения абразивом. Основана на усталостном разрушении.
2. Абразивная резка (с суспензией): Идеальна для твердых и хрупких материалов. Быстрее и универсальнее. Основана на микроскалывании.
#колебания #пьезоэффект #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
Обычный нож режет за счет давления и острой кромки. Ультразвуковой — добавляет к этому мощнейшую высокочастотную вибрацию.
▪️ 1. Невидимое движение: Лезвие ножа соединяется с специальным устройством — пьезоэлектрическим или магнитострикционным преобразователем. Оно создает механические колебания с ультразвуковой частотой — от 20 000 до 50 000 раз в секунду! Глаз этого движения не видит, амплитуда колебаний лезвия очень мала (буквально микрон).
▪️ 2. Микроудары, а не давление: Именно эти сверхбыстрые колебания — главный секрет. Лезвие не просто давит на материал, а наносит по нему десятки тысяч микроскопических ударов в секунду.
▫️ 1. Режим без абразив — Резка за счет ультразвуковой УСТАЛОСТИ материала.
➖ Физика процесса: Лезвие с огромной частотой (те же 20 000+ Гц) бьет по одной и той же точке на материале. Каждый удар — микроскопический. Но их десятки тысяч в секунду.
➖ Эффект «усталости»: В металле (стали) не успевают распространяться упругие волны. Энергия удара концентрируется в крошечной зоне, вызывая локальный нагрев и, что главное, мгновенное усталостное разрушение кристаллической решетки. Материал в точке контакта просто не выдерживает такого темпа и трескается.
➖ Аналогия: Если вы будете сгибать скрепку туда-сюда в одном месте, она переломится от усталости металла. Ультразвуковой нож делает это с невообразимой скоростью.
▫️ 2. Классический режим (с абразивом) — это резка за счет микроскалывания.
➖ Этот способ более универсален и эффективен для очень твердых и хрупких материалов (стекло, керамика, композиты). Абразивные частицы делают основную работу.
Эффективность: Резка за счет чистой усталости металла часто менее эффективна и медленнее, чем абразивный метод. Она требует больше энергии и может сильнее изнашивать само лезвие ножа.
Материал: Для резки, например, стекла или карбида вольфрама только ультразвуком без абразива потребовались бы титанические усилия. Абразив (как алмазная пыль) кардинально ускоряет процесс.
Качество края: Резка ультразвуковой усталостью может оставлять более заметные следы деформации на краях по сравнению с чистым абразивным скалыванием.
Получается, современный мощный ультразвуковой резак — это инструмент с двумя основными режимами:
1. «Чистая» резка (без абразива): Хороша для металлов, где важно избежать загрязнения абразивом. Основана на усталостном разрушении.
2. Абразивная резка (с суспензией): Идеальна для твердых и хрупких материалов. Быстрее и универсальнее. Основана на микроскалывании.
#колебания #пьезоэффект #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
🔥78❤33👍18⚡8🤔2🤯2🙈2🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
Плазма дуги будет очень сильно реагировать на мощные неодимовые магниты. Дуга начнет двигаться, изгибаться и даже вращаться под действием магнитного поля. Плазма электрической дуги — это раскаленный ионизированный газ, состоящий из положительных ионов и отрицательных электронов. Это, по сути, проводник с током.
На любой движущийся заряженный частицы (а электроны в токе как раз движутся) действует сила Лоренца. Ее направление зависит от направления тока и направления магнитного поля (определяется по правилу левой руки).
Что происходит в дуге:
1. Сила, действующая на носители тока: Магнитное поле магнитов действует на движущиеся электроны (основные носители тока в дуге) с определенной силой, перпендикулярной и их движению, и направлению поля.
2. Смещение и растяжение дуги: Поскольку сила Лоренца действует на всю дугу, она начинает "толкать" плазменный шнур. Дуга перестает быть прямой кратчайшей линией между электродами и изгибается, вытягиваясь в сторону, перпендикулярную линиям магнитного поля.
3. Эффект "магнитного дутья": Это классический технический прием для гашения электрической дуги в высоковольтных выключателях. Мощные магниты располагают так, чтобы сила Лоренца растягивала дугу, заставляя ее двигаться вдоль дугогасительной камеры. При движении дуга контактирует с холодными стенками камеры, интенсивно охлаждается, и ее сопротивление растет, пока она не погаснет.
Если прикрепить мощные неодимовые магниты с противоположными полюсами по бокам от дуги, вы увидите следующие эффекты:
▪️ Отклонение дуги: Дуга будет не просто прыгать между электродами, а будет изогнутой, похожей на арку или букву "С".
▪️ Движение дуги: Если расположить магниты особым образом (например, создав поле, перпендикулярное плоскости дуги), можно заставить дугу быстро вращаться вокруг электродов. Это выглядит как яркое, светящееся "огненное колесо".
▪️ Удлинение и охлаждение: Растянутая дуга становится длиннее, что приводит к ее охлаждению. Она может стать более бледной и менее стабильной.
▪️ Ускоренное гашение: Если источник питания не может поддерживать растянутую и охлажденную дугу, она может погаснуть быстрее, чем без магнитов.
1. Плазменные резаки и сварочные аппараты: В некоторых современных плазменных резаках используются магнитные системы для стабилизации и вращения плазменной струи. Это повышает качество и равномерность реза.
2. Исследования термоядерного синтеза (Токамак): Это самый масштабный пример. Гигантские сверхпроводящие магниты используются для удержания и стабилизации плазмы, не давая ей коснуться стенок реактора.
3. Высоковольтные выключатели: Как уже упоминалось, для принудительного гашения дуги.
Если вы прикрутите мощные неодимовые магниты к электродам с дугой, вы не просто увидите реакцию плазмы — вы станете свидетелем фундаментального физического явления, которое лежит в основе многих современных технологий. Дуга будет активно изгибаться и двигаться под действием магнитного поля, демонстрируя прямую связь между электричеством и магнетизмом. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥40👍20❤11⚡7🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Диамагнитная беговая дорожка
Набор из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики
💡 Physics.Math.Code // @physics_lib
Набор из пяти концентрических неодимовых магнитов, чередующихся N-S-N-S-N, образует беговую дорожку и формирует поле захвата, над которой парят тонкие слои пиролитического графита.
Пиролитический графит (иногда пирографит) — форма графита. Он обычно используется как инструмент калибровки для микроскопических исследований, таких как сканирующая туннельная микроскопия или атомно-силовая микроскопия. Пиролитический графит получают нагреванием смеси кокса и пека до 2800 °C; из газообразных углеводородов при температуре 1400—1500 °C в вакууме с последующим нагреванием образовавшегося пироуглерода до температуры 2500—3000 °C при давлении 50 МПа (образовавшийся продукт — пирографит). Пиролитический графит или пирографит — один из самых интересных видов углерода. Он является отличным диамагнетиком (веществом, намагничивающимся против направления внешнего магнитного поля). Его плотность составляет 2200 кг/м³. #физика #факты #химия #опыты #магнетизм #physics #диамагнетики
💡 Physics.Math.Code // @physics_lib
👍59❤18🔥13⚡1😍1