Media is too big
VIEW IN TELEGRAM
▪️ Сложение колебаний динамика и прямолинейного потока вода, в результате которого получается бегущая волна около синусоидальной формы. Однако волна в некоторые моменты времени как будто замирает в воздухе. Связано это со стробоскопическим эффектом: частота камеры иногда точно совпадает с частотой колебаний динамика, в результате подвижная струя кажется неподвижной. Стробоскопический эффект при съёмке заключается в иллюзии неподвижности быстро движущихся тел.
▪️Неодимовый магнит может использоваться для сбора железной стружки благодаря высокой силе притяжения, которая характерна для этого типа магнитов. Стружка, особенно железосодержащая, притягивается к магниту, что позволяет улавливать её в разных областях. Магнит притягивает ферромагнитные частицы (железо, сталь). Цветные металлы и неметаллические загрязнения остаются незамеченными. Для очистки моторного масла от мелкой металлической стружки, которая образуется из-за трения деталей двигателя. Магнит размещают снаружи корпуса масляного фильтра, в области прохождения масла. Стружка притягивается и удерживается, предотвращая её дальнейшее циркулирование по системе.
▪️Уменьшение объема тела тесно связано с уменьшением его момента инерции J = (2/5) × m × r² (для сферы). Закон сохранения момента импульса гласит, что если момент внешних сил, действующих на механическую систему относительно центра оси, равен нулю, то момент импульса системы относительно этого центра с течением времени не изменяется. Если момент импульса L = J ×ω сохраняется, то при уменьшении момента инерции J (сжатие проволочного каркаса), частота вращения будет увеличиваться.
▪️ Рёбра жёсткости (складки) способны сделать бумагу твёрдой — они придают листу прочность, который не выдерживает в форме ровного прямого листа. Это происходит, если лист сложить так, чтобы получились рёбра жёсткости. Например: Сложить лист «гармошкой» — создаёт большое количество рёбер жёсткости. Рёбра жёсткости направляют деформацию «по сложному» пути. Например, если лист согнули под углом 90 градусов, напряжения, которые возникают в материале, распространяются не в продольной плоскости, а в поперечной. В этой плоскости согнуть лист сложнее, так как нужно разорвать межмолекулярные связи.
▪️Гироскопический эффект и прецессия — понятия, связанные с поведением вращающихся объектов, в частности гироскопов. Эти термины объясняют, как ось вращения гироскопа сохраняет направление в пространстве, а при внешнем воздействии ось не меняет направление сразу, а начинает плавно описывать движение. Гироскопический эффект — это способность быстро вращающегося тела удерживать своё положение в пространстве в плоскости своего вращения. Прецессия — это движение оси вращения гироскопа вокруг другой оси. Сила тяжести действует на гироскоп, создавая момент силы, который пытается заставить его опрокинуться. Однако гироскоп прецессирует, и ось его вращения остаётся направленной вверх. Если ось быстро вращающегося гироскопа слегка отклонить от вертикали, то она начнёт прецессировать вокруг вертикального положения, то есть совершать вращательное движение по поверхности конуса.
▪️Когда один шар сталкивается с цепочкой из нескольких одинаковых шаров, налетающий шар обменивается скоростью со вторым шаром, второй — с третьим и так далее. В результате все шары, кроме последнего, будут находиться в покое, а последний шар отскочит ровно с той же самой скоростью, с которой двигался налетающий шар. Это происходит благодаря закону сохранения импульса, согласно которому суммарный импульс системы тел до взаимодействия равен суммарному импульсу этой системы тел после взаимодействия.
#физика #physics #science #видеоуроки #наука #опыты #эксперименты #механика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍59🔥20❤16🤯1🤩1🗿1👾1
📚 Учебники по физике (профильный уровень) [5 томов] Автор: Мякишев
💾 Скачать книги
Мякишев Геннадий Яковлевич (20 марта 1926, Москва — 25 декабря 2003, Москва) — советский и российский учёный и педагог, специалист в области общей физики, автор школьных учебников по физике. Работал в МГУ в должности доцента. #подборка_книг #физика #physics #science
💡 Physics.Math.Code // @physics_lib
💾 Скачать книги
Мякишев Геннадий Яковлевич (20 марта 1926, Москва — 25 декабря 2003, Москва) — советский и российский учёный и педагог, специалист в области общей физики, автор школьных учебников по физике. Работал в МГУ в должности доцента. #подборка_книг #физика #physics #science
💡 Physics.Math.Code // @physics_lib
🔥35👍17❤9😍2⚡1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
⭕️ Самодельный лазерный уровень 🔴
В последнее время все чаще стала появляться техника, работающая с применением лазерной технологии, например, принтеры, медицинское оборудование, лабораторные приборы и т.д. А знаете ли Вы, что физическая основа лазерного излучения была предсказана еще Альбертом Эйнштейном в 1916 году? Но до изобретения первого лазера было еще далеко. После многочисленных исследований ученых-физиков только в 1960 году Теодор Мейман представил миру первый лазер, излучающий волну за счет искусственного рубина. Изначально луч проецировался в инфракрасном диапазоне, а чуть позже была применена технология окрашивания, и излучение приобрело красный цвет. Это открытие считается одним из самых значимых, совершенных в XX веке. Лазерные технологии стали применяться в космической, военной, промышленной сфере, а в повседневную жизнь человека они вошли только в XXI веке, но сразу охватили практически все сферы деятельности, в том числе, строительство и ремонт.
Около 20 лет назад лазерное излучение стало применяться в измерительных приборах – нивелирах. Это в значительной степени облегчило проведение строительных, отделочных и монтажных работ. Ведь для нанесения разметки не нужно делать сложные замеры, достаточно спроецировать на объект лазерный луч и получить идеально ровную линию. #лазер #техника #science #физика #physics #производство
🔥 Наплавка гребного винта лазерной сваркой
💥 Первый лазер
💥 Лазерная очистка поверхности старой монеты
💥 Лазерная резка
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
В последнее время все чаще стала появляться техника, работающая с применением лазерной технологии, например, принтеры, медицинское оборудование, лабораторные приборы и т.д. А знаете ли Вы, что физическая основа лазерного излучения была предсказана еще Альбертом Эйнштейном в 1916 году? Но до изобретения первого лазера было еще далеко. После многочисленных исследований ученых-физиков только в 1960 году Теодор Мейман представил миру первый лазер, излучающий волну за счет искусственного рубина. Изначально луч проецировался в инфракрасном диапазоне, а чуть позже была применена технология окрашивания, и излучение приобрело красный цвет. Это открытие считается одним из самых значимых, совершенных в XX веке. Лазерные технологии стали применяться в космической, военной, промышленной сфере, а в повседневную жизнь человека они вошли только в XXI веке, но сразу охватили практически все сферы деятельности, в том числе, строительство и ремонт.
Около 20 лет назад лазерное излучение стало применяться в измерительных приборах – нивелирах. Это в значительной степени облегчило проведение строительных, отделочных и монтажных работ. Ведь для нанесения разметки не нужно делать сложные замеры, достаточно спроецировать на объект лазерный луч и получить идеально ровную линию. #лазер #техника #science #физика #physics #производство
🔥 Наплавка гребного винта лазерной сваркой
💥 Лазерная очистка поверхности старой монеты
🔦 Лазерная сварка с разной формой луча
💥 Лазерное скальпирование микросхемы
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥133👍50❤29🙈11❤🔥6✍3🤯1😨1🆒1
Media is too big
VIEW IN TELEGRAM
Самой яркой и наглядной демонстрацией эффекта является резка (фактически — откалывание) стекла обыкновенными ножницами в воде. Таким образом получится вырезать из стекла практически любую фигуру. В физикеэффект Ребиндера — это снижение твёрдости и пластичности материала, в частности металлов, под воздействием поверхностно-активной плёнки. Эффект назван в честь советского учёного Петра Александровича Ребиндера, который впервые описал этот эффект в 1928 году. Предлагаемое объяснение этого эффекта заключается в разрушении поверхностных оксидных плёнок и снижении поверхностной энергии с помощью поверхностно-активных веществ. Этот эффект особенно важен при механической обработке, поскольку смазочные материалы снижают силу резания.
Эффект Ребиндера
#физика #адсорбция #physics #science #химия #видеоуроки #наука #опыты #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍96🔥34❤14🤔5❤🔥4✍2🤯2😱2
Media is too big
VIEW IN TELEGRAM
🔨Уникальным инженерным соревнованием в Чили, ориентированным на прочность конструкций, является испытание на удар, в ходе которого участники проектируют и строят конструкции для защиты хрупких предметов, таких как яйцо, от увеличивающихся по силе ударов, связанных с падением груза (молота).
Цель: Создать конструкцию, защищающую хрупкий предмет (например, яйцо) от падения груза.
Как это работает: Вес падает на конструкцию с постепенно увеличивающейся высоты, и цель состоит в том, чтобы выдержать наибольшее количество ударов, прежде чем она разрушится.
Считаете ли вы, что именно такими, ориентированными на практику, должны быть лабораторные работы у студентов физ-мата и архитектурного направлений?
🪨 Является ли данная конструкция прочной и устойчивой при нагрузке сверху с точки зрения физики?
🏛 Отличная иллюстрация явления резонанса
⚙️ Забытые технологии. Как возводили мосты в средневековье
🪵 Арочный каменный мост за 19 дней
⏳ Выравнивания опор Эйфелевой башни
📙 Почему мы не проваливаемся сквозь пол [1971] Гордон Джеймс Эдвард
📘 Конструкции, или почему не ломаются вещи [1980] Гордон Джеймс Эдвард
#physics #science #сопротивление_материалов #механика #физика #архитектура
💡 Physics.Math.Code // @physics_lib
Цель: Создать конструкцию, защищающую хрупкий предмет (например, яйцо) от падения груза.
Как это работает: Вес падает на конструкцию с постепенно увеличивающейся высоты, и цель состоит в том, чтобы выдержать наибольшее количество ударов, прежде чем она разрушится.
Считаете ли вы, что именно такими, ориентированными на практику, должны быть лабораторные работы у студентов физ-мата и архитектурного направлений?
🪨 Является ли данная конструкция прочной и устойчивой при нагрузке сверху с точки зрения физики?
🏛 Отличная иллюстрация явления резонанса
⚙️ Забытые технологии. Как возводили мосты в средневековье
🪵 Арочный каменный мост за 19 дней
⏳ Выравнивания опор Эйфелевой башни
📙 Почему мы не проваливаемся сквозь пол [1971] Гордон Джеймс Эдвард
📘 Конструкции, или почему не ломаются вещи [1980] Гордон Джеймс Эдвард
#physics #science #сопротивление_материалов #механика #физика #архитектура
💡 Physics.Math.Code // @physics_lib
👍110🔥43❤21🤔4❤🔥2✍1💯1
📕 Обольстить логикой. Выводы на все случаи жизни [2020] Дрессер К.
📗 Обольстить математикой. Числовые игры на все случаи жизни [2021] Дрессер К.
📘 Обольстить физикой. Истории на все случаи жизни [2021] Дрессер К.
💾 Скачать книги
Кристоф Дрессер — известный немецкий журналист, автор нескольких научно-популярных книг, в 2005 г. был назван лучшим журналистом года, пишущим о науке, а в 2008 г. получил медаль Математического общества Германии за популяризацию научных знаний. #физика #математика #логика #science #наука #math #физика
📚 Подборка по физике для поступающих в ВУЗы
📚 Подборка книг по Астрономии, Астрофизике, Космосу
📚 Подборка книг по физике: Мах Эрнст
📚 Подборка книг по теме: Опыты по физике
💡 Physics.Math.Code // @physics_lib
📗 Обольстить математикой. Числовые игры на все случаи жизни [2021] Дрессер К.
📘 Обольстить физикой. Истории на все случаи жизни [2021] Дрессер К.
💾 Скачать книги
Кристоф Дрессер — известный немецкий журналист, автор нескольких научно-популярных книг, в 2005 г. был назван лучшим журналистом года, пишущим о науке, а в 2008 г. получил медаль Математического общества Германии за популяризацию научных знаний. #физика #математика #логика #science #наука #math #физика
📚 Подборка по физике для поступающих в ВУЗы
📚 Подборка книг по Астрономии, Астрофизике, Космосу
📚 Подборка книг по физике: Мах Эрнст
📚 Подборка книг по теме: Опыты по физике
💡 Physics.Math.Code // @physics_lib
❤46👍18🔥8🤨4😍3
Дрессер К. - 3 книги.zip
4.9 MB
📕 Обольстить логикой. Выводы на все случаи жизни [2020] Дрессер К.
Эта книга полностью оправдывает свое название. Прочитав ее, вы поймете прелесть логического мышления и увидите, как логика помогает нам рассуждать и делать выводы даже в самых непростых жизненных ситуациях. В конце каждой главы читатель найдет лакомый кусочек - небольшую задачку. И о чем бы ни рассказывал автор - об устройстве компьютера или составлении библиотечного каталога, о соревновании Ахиллеса с черепахой или брадобрее, который никак не может побриться, он показывает: логика может быть поистине обольстительной! Дрессер ставит перед собой довольно сложную задачу - с помощью забавных историй объяснить читателю идеи классической логики и новые открытия в науке, которая служит фундаментом всех точных наук. Автор решает эту задачу так блестяще, что все изложенное на страницах книги понятно и интересно и специалистам, и дилетантам.
📗 Обольстить математикой. Числовые игры на все случаи жизни [2021] Дрессер К.
С помощью занимательных историй из повседневной жизни автор рассказывает, как рождаются математические законы и как они действуют в самых различных жизненных ситуациях. В конце каждой главы читатель найдет небольшие задачки. Идет ли речь о расследовании преступлений или о теории музыки, об азартных играх или планировании путешествий - математика, утверждает Дрессер, способна доставить истинное удовольствие! Эта книга - совсем не учебник, она написана легко, с юмором, а потому не следует опасаться математических сложностей: тут все понятно и вполне доступно для всех - и физиков, и лириков.
Для старшеклассников, студентов, их родителей и преподавателей. 6-е изд., электронное.
📘 Обольстить физикой. Истории на все случаи жизни [2021] Дрессер К.
Кристоф Дрессер - известный немецкий журналист, автор нескольких научно-популярных книг, в 2005 г. был назван лучшим журналистом года, пишущим о науке, а в 2008 г. получил медаль Математического общества Германии за популяризацию научных знаний. В своей книге он легко, с юмором говорит о том, какую важную роль в нашей жизни играет физика и как ее законы определяют самые разные явления - и на Земле, и в космосе. В конце каждой главы читатель найдет задачу и, решая ее, сможет проверить глубину собственных познаний в этой удивительной науке - физике.
Для старшеклассников, студентов, их родителей и преподавателей. 6-е изд., электронное. #физика #математика #логика #science #наука #math #физика
💡 Physics.Math.Code // @physics_lib
Эта книга полностью оправдывает свое название. Прочитав ее, вы поймете прелесть логического мышления и увидите, как логика помогает нам рассуждать и делать выводы даже в самых непростых жизненных ситуациях. В конце каждой главы читатель найдет лакомый кусочек - небольшую задачку. И о чем бы ни рассказывал автор - об устройстве компьютера или составлении библиотечного каталога, о соревновании Ахиллеса с черепахой или брадобрее, который никак не может побриться, он показывает: логика может быть поистине обольстительной! Дрессер ставит перед собой довольно сложную задачу - с помощью забавных историй объяснить читателю идеи классической логики и новые открытия в науке, которая служит фундаментом всех точных наук. Автор решает эту задачу так блестяще, что все изложенное на страницах книги понятно и интересно и специалистам, и дилетантам.
📗 Обольстить математикой. Числовые игры на все случаи жизни [2021] Дрессер К.
С помощью занимательных историй из повседневной жизни автор рассказывает, как рождаются математические законы и как они действуют в самых различных жизненных ситуациях. В конце каждой главы читатель найдет небольшие задачки. Идет ли речь о расследовании преступлений или о теории музыки, об азартных играх или планировании путешествий - математика, утверждает Дрессер, способна доставить истинное удовольствие! Эта книга - совсем не учебник, она написана легко, с юмором, а потому не следует опасаться математических сложностей: тут все понятно и вполне доступно для всех - и физиков, и лириков.
Для старшеклассников, студентов, их родителей и преподавателей. 6-е изд., электронное.
📘 Обольстить физикой. Истории на все случаи жизни [2021] Дрессер К.
Кристоф Дрессер - известный немецкий журналист, автор нескольких научно-популярных книг, в 2005 г. был назван лучшим журналистом года, пишущим о науке, а в 2008 г. получил медаль Математического общества Германии за популяризацию научных знаний. В своей книге он легко, с юмором говорит о том, какую важную роль в нашей жизни играет физика и как ее законы определяют самые разные явления - и на Земле, и в космосе. В конце каждой главы читатель найдет задачу и, решая ее, сможет проверить глубину собственных познаний в этой удивительной науке - физике.
Для старшеклассников, студентов, их родителей и преподавателей. 6-е изд., электронное. #физика #математика #логика #science #наука #math #физика
💡 Physics.Math.Code // @physics_lib
👍64❤31🔥14🤩2🗿1
Media is too big
VIEW IN TELEGRAM
🌊 Не просто камни: как инженеры укрощают морскую ярость
Знакомьтесь: это не просто груда булыжников, а высокотехнологичное средство спасения целых городов! Речь о берегозащитных сооружениях — титанических инженерных проектах, которые спасают наши пляжи, набережные и дома от разрушительной силы волн.
Но как обычные камни могут противостоять мощи океана? Здесь на помощь приходит физика!
🧱 Главные герои защиты:
1. Волноломы (Брекватеры) — Эти гигантские стены уходят далеко в море. Их задача — принять на себя первый и самый сильный удар волны, разбить ее и отнять энергию до того, как она дойдет до берега.
Физика в деле: Здесь работает дифракция — волны огибают препятствие и теряют свою силу. Часть энергии гасится за счет турбулентности и трения о rough (шероховатую) поверхность сооружения.
2. Буны — это перпендикулярные берегу «пальцы», которые вы часто видите на пляжах. Они не столько останавливают волны, сколько управляют движением песка.
Физика в деле: Буны используют силу литорального (вдольберегового) течения. Они ловят песок, который течет вдоль берега, не давая ему уплывать, и таким образом естественным образом наращивают пляж.
3. Габионы — сетки, заполненные камнями. Они кажутся простыми, но гениальны: гибкие, прочные и отлично пропускают воду, снижая давление волны.
Физика в деле: Принцип диссипации энергии: энергия волны не отражается, а поглощается, тратится на трение между тысячами камней внутри габиона.
🧠 Интересные факты:
▪️ Древние римляне были мастерами гидротехники. Порт в Кесарии (Израиль), построенный Иродом Великим, использовал сложную систему волноломов из подводного бетона, который затвердевал в воде!
▪️ Голландия — мировой лидер в борьбе с морем. Их проект «Дельтаверкен» — одно из семи современных чудес света инженерной мысли. Они не просто защищаются, а отвоевывают у моря землю!
▪️ Эффект «гавани»: Иногда волноломы, призванные защищать, могут усилить проблему. Если построить их неправильно, они могут создать резонансные колебания внутри гавани (сейши), которые раскачивают и бьют по пришвартованным лодкам сильнее, чем сами волны с моря.
⚖️ Экология vs Инженерия
▪️ Раньше просто заливали бетоном всё. Сейчас тренд — «мягкая» защита:
▪️ Песчаная подпитка — просто завозят новый песок. Дорого, но экологично.
▪️ Создание искусственных рифов — которые гасят волны так же, как и натуральные.
▪️ Восстановление дюн и мангровых зарослей — лучший защитник берега — сама природа.
Сила волны колоссальна. Но человеческий гений, подкрепленный знанием законов физики, позволяет нам не просто противостоять этой силе, а грамотно ею управлять.
А вы видели подобные сооружения вживую? Делитесь фото в комментариях! 📸 #гидродинамика #сопромат #физика #механика #наука #science #math #physics
💡 Physics.Math.Code // @physics_lib
Знакомьтесь: это не просто груда булыжников, а высокотехнологичное средство спасения целых городов! Речь о берегозащитных сооружениях — титанических инженерных проектах, которые спасают наши пляжи, набережные и дома от разрушительной силы волн.
Но как обычные камни могут противостоять мощи океана? Здесь на помощь приходит физика!
🧱 Главные герои защиты:
1. Волноломы (Брекватеры) — Эти гигантские стены уходят далеко в море. Их задача — принять на себя первый и самый сильный удар волны, разбить ее и отнять энергию до того, как она дойдет до берега.
Физика в деле: Здесь работает дифракция — волны огибают препятствие и теряют свою силу. Часть энергии гасится за счет турбулентности и трения о rough (шероховатую) поверхность сооружения.
2. Буны — это перпендикулярные берегу «пальцы», которые вы часто видите на пляжах. Они не столько останавливают волны, сколько управляют движением песка.
Физика в деле: Буны используют силу литорального (вдольберегового) течения. Они ловят песок, который течет вдоль берега, не давая ему уплывать, и таким образом естественным образом наращивают пляж.
3. Габионы — сетки, заполненные камнями. Они кажутся простыми, но гениальны: гибкие, прочные и отлично пропускают воду, снижая давление волны.
Физика в деле: Принцип диссипации энергии: энергия волны не отражается, а поглощается, тратится на трение между тысячами камней внутри габиона.
🧠 Интересные факты:
▪️ Древние римляне были мастерами гидротехники. Порт в Кесарии (Израиль), построенный Иродом Великим, использовал сложную систему волноломов из подводного бетона, который затвердевал в воде!
▪️ Голландия — мировой лидер в борьбе с морем. Их проект «Дельтаверкен» — одно из семи современных чудес света инженерной мысли. Они не просто защищаются, а отвоевывают у моря землю!
▪️ Эффект «гавани»: Иногда волноломы, призванные защищать, могут усилить проблему. Если построить их неправильно, они могут создать резонансные колебания внутри гавани (сейши), которые раскачивают и бьют по пришвартованным лодкам сильнее, чем сами волны с моря.
⚖️ Экология vs Инженерия
▪️ Раньше просто заливали бетоном всё. Сейчас тренд — «мягкая» защита:
▪️ Песчаная подпитка — просто завозят новый песок. Дорого, но экологично.
▪️ Создание искусственных рифов — которые гасят волны так же, как и натуральные.
▪️ Восстановление дюн и мангровых зарослей — лучший защитник берега — сама природа.
Сила волны колоссальна. Но человеческий гений, подкрепленный знанием законов физики, позволяет нам не просто противостоять этой силе, а грамотно ею управлять.
А вы видели подобные сооружения вживую? Делитесь фото в комментариях! 📸 #гидродинамика #сопромат #физика #механика #наука #science #math #physics
💡 Physics.Math.Code // @physics_lib
1❤79👍61🔥23🤔3❤🔥2✍1👏1
This media is not supported in your browser
VIEW IN TELEGRAM
🧲 Магнитная аномалия — разные направления вращения ⏳
Металлические шарики вращаются против часовой стрелки, потому что они пытаются "догнать" смещающееся магнитное поле, но из-за инерции (в данном случае магнитной инерции, вызванной вихревыми токами) они всегда отстают. Чтобы уменьшить это отставание, они начинают вращаться в противоположную сторону, что с точки зрения неподвижного наблюдателя выглядит как вращение против часовой стрелки. Это явление абсолютно аналогично работе беличьей клетки в асинхронном электродвигателе.
1. Вращающееся магнитное поле: Ваши 8 магнитов с чередующимися полюсами, вращаясь по часовой стрелке, создают мощное вращающееся магнитное поле. Представьте, что это поле — это невидимый "буравчик", который ввинчивается в пространство над диском.
2. Вихревые токи (токи Фуко): Когда это вращающееся магнитное поле проходит под металлическим шариком, оно наводит в нем электрические токи. Эти токи циркулируют внутри объема шарика, поэтому их называют вихревыми.
3. Взаимодействие токов и поля (Закон Ленца): Согласно закону электромагнитной индукции и правилу Ленца, вихревые токи всегда имеют такое направление, чтобы противодействовать причине, их вызвавшей. Причина — это изменение магнитного поля, а именно его смещение относительно шарика.
4. "Погоня" с отставанием (Принцип асинхронности):
▪️ Шарик — это не магнит, у него нет собственных полюсов, которые могли бы сразу зафиксироваться напротив полюсов вращающегося диска. Ему нужно время, чтобы в нем навелись токи, которые, в свою очередь, создадут собственное магнитное поле.
▪️ Из-за этого запаздывания (магнитной инерции) поле, созданное вихревыми токами в шарике, всегда отстает от внешнего поля диска.
▪️ Вращающееся поле диска как бы "убегает" от шарика по часовой стрелке.
▪️ Чтобы уменьшить это отставание (т.е. уменьшить скорость изменения поля относительно себя), шарик стремится двигаться в том же направлении, что и поле. Он пытается "догнать" убегающий магнитный поток.
5. Почему направление обратное? Представьте, что вы стоите на эскалаторе, который едет вниз. Чтобы остаться на одном уровне относительно неподвижного пола, вам нужно идти вверх по эскалатору. Эскалатор — это магнитное поле, движущееся по часовой стрелке. Шарик — это вы. Чтобы "остаться на месте" относительно убегающего поля (то есть не отставать), шарик должен бежать по "эскалатору" против его хода. Для внешнего наблюдателя, смотрящего на неподвижный пластиковый лист, это выглядит как движение шарика против часовой стрелки.
Выводы: Частота вращения двигателя определяет скорость "убегания" поля и, следовательно, скорость вращения шарика. Дело в запаздывании намагниченности металла. "Запаздывание намагниченности" — это и есть физическая суть явления, обусловленная возникновением вихревых токов и индуктивностью материала. #физика #электродинамика #наука #опыты #physics #science #магнетизм
💡 Physics.Math.Code // @physics_lib
Металлические шарики вращаются против часовой стрелки, потому что они пытаются "догнать" смещающееся магнитное поле, но из-за инерции (в данном случае магнитной инерции, вызванной вихревыми токами) они всегда отстают. Чтобы уменьшить это отставание, они начинают вращаться в противоположную сторону, что с точки зрения неподвижного наблюдателя выглядит как вращение против часовой стрелки. Это явление абсолютно аналогично работе беличьей клетки в асинхронном электродвигателе.
1. Вращающееся магнитное поле: Ваши 8 магнитов с чередующимися полюсами, вращаясь по часовой стрелке, создают мощное вращающееся магнитное поле. Представьте, что это поле — это невидимый "буравчик", который ввинчивается в пространство над диском.
2. Вихревые токи (токи Фуко): Когда это вращающееся магнитное поле проходит под металлическим шариком, оно наводит в нем электрические токи. Эти токи циркулируют внутри объема шарика, поэтому их называют вихревыми.
3. Взаимодействие токов и поля (Закон Ленца): Согласно закону электромагнитной индукции и правилу Ленца, вихревые токи всегда имеют такое направление, чтобы противодействовать причине, их вызвавшей. Причина — это изменение магнитного поля, а именно его смещение относительно шарика.
4. "Погоня" с отставанием (Принцип асинхронности):
▪️ Шарик — это не магнит, у него нет собственных полюсов, которые могли бы сразу зафиксироваться напротив полюсов вращающегося диска. Ему нужно время, чтобы в нем навелись токи, которые, в свою очередь, создадут собственное магнитное поле.
▪️ Из-за этого запаздывания (магнитной инерции) поле, созданное вихревыми токами в шарике, всегда отстает от внешнего поля диска.
▪️ Вращающееся поле диска как бы "убегает" от шарика по часовой стрелке.
▪️ Чтобы уменьшить это отставание (т.е. уменьшить скорость изменения поля относительно себя), шарик стремится двигаться в том же направлении, что и поле. Он пытается "догнать" убегающий магнитный поток.
5. Почему направление обратное? Представьте, что вы стоите на эскалаторе, который едет вниз. Чтобы остаться на одном уровне относительно неподвижного пола, вам нужно идти вверх по эскалатору. Эскалатор — это магнитное поле, движущееся по часовой стрелке. Шарик — это вы. Чтобы "остаться на месте" относительно убегающего поля (то есть не отставать), шарик должен бежать по "эскалатору" против его хода. Для внешнего наблюдателя, смотрящего на неподвижный пластиковый лист, это выглядит как движение шарика против часовой стрелки.
Выводы: Частота вращения двигателя определяет скорость "убегания" поля и, следовательно, скорость вращения шарика. Дело в запаздывании намагниченности металла. "Запаздывание намагниченности" — это и есть физическая суть явления, обусловленная возникновением вихревых токов и индуктивностью материала. #физика #электродинамика #наука #опыты #physics #science #магнетизм
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍51❤25🔥9🤯4⚡2😱2🤨1
Космический садовник для полива своей оранжереи использует цилиндрический бак высотой H = 20 м, заполненный водой. Чтобы создать искусственную гравитацию, бак вращается вокруг своей вертикальной оси с постоянной угловой скоростью ω = 2 рад/с.
В боковой стенке бака у его дна, на расстоянии R₀ = 1 м от оси вращения, проделано малое цилиндрическое отверстие, ось которого горизонтальна. Считайте, что уровень воды в баке поддерживается постоянным, и глубина воды над отверстием равна H (т.е. свободная поверхность находится на высоте H над отверстием). Течение — стационарное, жидкость — идеальная и несжимаемая. Давление на свободной поверхности атмосферное.
Вопрос: Найдите уравнение траектории (форму) струи, вытекающей из отверстия, в системе отсчета, связанной с вращающимся баком. Проигнорируйте сопротивление воздуха и считайте, что струя находится в вакууме.
#задачи #физика #разбор_задач #physics #механика #гидравлика #гидродинамика #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍30🤯20❤14🔥4🤔4✍2😱2