🕯🔍 Шлирен-метод (от нем. Schlieren — оптическая неоднородность) — способ обнаружения оптических неоднородностей в прозрачных, преломляющих средах, и выявления дефектов отражающих поверхностей.
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
Иногда его называют методом Тёплера — по имени автора, немецкого физика Августа Тёплера.
Шлирен-метод, разработанный в 1864 году Августом Тёплером, является развитием предложенного в 1857 году теневого метода Леона Фуко, разработанного для контроля геометрии при изготовлении сферических зеркал телескопов. Заключался метод Фуко в том, что проверяемое зеркало освещали точечным источником света. В центр кривизны сферы помещали непрозрачный экран с острой кромкой, затеняющий в формируемом изображении точечный источник, но не препятствующий лучам, рассеянным зеркалом из-за нарушения геометрии. Позднее такой экран стали называть ножом Фуко.
Если поверхность зеркала была строго сферичной, нож, перекрывая основной световой поток точечного источника, равномерно затенял формируемое зеркалом изображение. Если сфера имела дефекты — формируемое изображение, в зависимости от знака и степени ошибки радиуса локальной кривизны, имело светлые или тёмные области. Ориентируясь по такой разной освещённости, проводили дошлифовку зеркала.
Шлирен-метод получил особенно широкое распространение для визуализации различных процессов в воздушной среде. Это относится, например, к исследованиям распределения плотности воздушных потоков образующихся при обтекании моделей в аэродинамических трубах, то есть, в авиационной технике. Применяется, также в механике жидкости, баллистике, изучении распространения и смешивания газов и растворов, исследовании теплообмена за счет конвекции и т. п.
#physics #наука #физика #термодинамика #эксперименты #опыты #видеоуроки #научные_фильмы
💡 Physics.Math.Code // @physics_lib
🔥52👍28❤17❤🔥2🆒2👏1🤯1🤩1
This media is not supported in your browser
VIEW IN TELEGRAM
🤔 В чем секрет этого супер-ножа? Физика процесса 🔊
Обычный нож режет за счет давления и острой кромки. Ультразвуковой — добавляет к этому мощнейшую высокочастотную вибрацию.
▪️ 1. Невидимое движение: Лезвие ножа соединяется с специальным устройством — пьезоэлектрическим или магнитострикционным преобразователем. Оно создает механические колебания с ультразвуковой частотой — от 20 000 до 50 000 раз в секунду! Глаз этого движения не видит, амплитуда колебаний лезвия очень мала (буквально микрон).
▪️ 2. Микроудары, а не давление: Именно эти сверхбыстрые колебания — главный секрет. Лезвие не просто давит на материал, а наносит по нему десятки тысяч микроскопических ударов в секунду.
▫️ 1. Режим без абразив — Резка за счет ультразвуковой УСТАЛОСТИ материала.
➖ Физика процесса: Лезвие с огромной частотой (те же 20 000+ Гц) бьет по одной и той же точке на материале. Каждый удар — микроскопический. Но их десятки тысяч в секунду.
➖ Эффект «усталости»: В металле (стали) не успевают распространяться упругие волны. Энергия удара концентрируется в крошечной зоне, вызывая локальный нагрев и, что главное, мгновенное усталостное разрушение кристаллической решетки. Материал в точке контакта просто не выдерживает такого темпа и трескается.
➖ Аналогия: Если вы будете сгибать скрепку туда-сюда в одном месте, она переломится от усталости металла. Ультразвуковой нож делает это с невообразимой скоростью.
▫️ 2. Классический режим (с абразивом) — это резка за счет микроскалывания.
➖ Этот способ более универсален и эффективен для очень твердых и хрупких материалов (стекло, керамика, композиты). Абразивные частицы делают основную работу.
Эффективность: Резка за счет чистой усталости металла часто менее эффективна и медленнее, чем абразивный метод. Она требует больше энергии и может сильнее изнашивать само лезвие ножа.
Материал: Для резки, например, стекла или карбида вольфрама только ультразвуком без абразива потребовались бы титанические усилия. Абразив (как алмазная пыль) кардинально ускоряет процесс.
Качество края: Резка ультразвуковой усталостью может оставлять более заметные следы деформации на краях по сравнению с чистым абразивным скалыванием.
Получается, современный мощный ультразвуковой резак — это инструмент с двумя основными режимами:
1. «Чистая» резка (без абразива): Хороша для металлов, где важно избежать загрязнения абразивом. Основана на усталостном разрушении.
2. Абразивная резка (с суспензией): Идеальна для твердых и хрупких материалов. Быстрее и универсальнее. Основана на микроскалывании.
#колебания #пьезоэффект #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
Обычный нож режет за счет давления и острой кромки. Ультразвуковой — добавляет к этому мощнейшую высокочастотную вибрацию.
▪️ 1. Невидимое движение: Лезвие ножа соединяется с специальным устройством — пьезоэлектрическим или магнитострикционным преобразователем. Оно создает механические колебания с ультразвуковой частотой — от 20 000 до 50 000 раз в секунду! Глаз этого движения не видит, амплитуда колебаний лезвия очень мала (буквально микрон).
▪️ 2. Микроудары, а не давление: Именно эти сверхбыстрые колебания — главный секрет. Лезвие не просто давит на материал, а наносит по нему десятки тысяч микроскопических ударов в секунду.
▫️ 1. Режим без абразив — Резка за счет ультразвуковой УСТАЛОСТИ материала.
➖ Физика процесса: Лезвие с огромной частотой (те же 20 000+ Гц) бьет по одной и той же точке на материале. Каждый удар — микроскопический. Но их десятки тысяч в секунду.
➖ Эффект «усталости»: В металле (стали) не успевают распространяться упругие волны. Энергия удара концентрируется в крошечной зоне, вызывая локальный нагрев и, что главное, мгновенное усталостное разрушение кристаллической решетки. Материал в точке контакта просто не выдерживает такого темпа и трескается.
➖ Аналогия: Если вы будете сгибать скрепку туда-сюда в одном месте, она переломится от усталости металла. Ультразвуковой нож делает это с невообразимой скоростью.
▫️ 2. Классический режим (с абразивом) — это резка за счет микроскалывания.
➖ Этот способ более универсален и эффективен для очень твердых и хрупких материалов (стекло, керамика, композиты). Абразивные частицы делают основную работу.
Эффективность: Резка за счет чистой усталости металла часто менее эффективна и медленнее, чем абразивный метод. Она требует больше энергии и может сильнее изнашивать само лезвие ножа.
Материал: Для резки, например, стекла или карбида вольфрама только ультразвуком без абразива потребовались бы титанические усилия. Абразив (как алмазная пыль) кардинально ускоряет процесс.
Качество края: Резка ультразвуковой усталостью может оставлять более заметные следы деформации на краях по сравнению с чистым абразивным скалыванием.
Получается, современный мощный ультразвуковой резак — это инструмент с двумя основными режимами:
1. «Чистая» резка (без абразива): Хороша для металлов, где важно избежать загрязнения абразивом. Основана на усталостном разрушении.
2. Абразивная резка (с суспензией): Идеальна для твердых и хрупких материалов. Быстрее и универсальнее. Основана на микроскалывании.
#колебания #пьезоэффект #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
🔥78❤34👍18⚡8🤔2🤯2🙈2🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
🛩 Аэродинамика крыла: почему самолёт падает, когда «задирает нос»?
Сегодня разберём одно из ключевых понятий в авиации — сваливание самолёта (или «штопор» в народе). Звучит пугающе, но на самом деле это чистая физика, которую пилоты хорошо знают и умеют предотвращать.
✈️ Сначала — магия подъёмной силы
Чтобы понять сваливание, нужно знать, как крыло создаёт подъёмную силу. Всё дело в форме крыла и угле атаки.
▪️ Форма крыла: Профиль крыла сделан так, что воздух сверху обтекает его быстрее, чем снизу. Согласно закону Бернулли, быстро движущийся воздух создаёт более низкое давление. Разница в давлении снизу и сверху и создаёт подъёмную силу.
▪️ Угол атаки: Это угол между хордой крыла (условной прямой от носка к задней кромке) и набегающим потоком воздуха. Чем больше угол атаки — тем больше подъёмная сила (но только до определённого предела!).
Представьте, что вы высовываете руку из окна движущейся машины: если вы слегка наклоните ладонь носом вверх, её будет поднимать. Чем сильнее наклоните — тем сильнее подъём. Это и есть увеличение угла атаки.
А что же такое сваливание? Вот мы и подошли к главному. Сваливание — это не отказ двигателей! Это аэродинамическая потеря подъёмной силы.
Что происходит при слишком большом угле атаки?
1. «Срыв потока»: Воздушный поток перестаёт плавно обтекать верхнюю поверхность крыла. Он становится турбулентным и отрывается от крыла.
2. Резкая потеря подъёмной силы: Начинается с задней кромки крыла и быстро движется вперёд. Крыло вместо того, чтобы «держать» в воздухе, превращается в кусок металла, создающий огромное сопротивление.
3. Падение: Самолёт перестаёт лететь и начинает «падать камнем», заваливаясь на нос или на крыло.
Ключевой момент: Сваливание может произойти на любой скорости и в любой конфигурации (с убранными или выпущенными шасси/закрылками). Главное — достигнуть критического угла атаки.
Как пилоты выводят самолёт из сваливания? Алгоритм прост и отработан до автоматизма:
1. «Нос — вниз!»: Первое и самое важное действие — уменьшить угол атаки. Пилот плавно отдаёт штурвал от себя, чтобы набегающий поток воздуха снова «прилип» к крылу.
2. Добавить тяги: Увеличить мощность двигателей для набора скорости.
Ни в коем случае нельзя тянуть штурвал на себя — это только усугубит сваливание!
Сваливание — это не мистика, а фундаментальный аэродинамический процесс. Современные самолёты оснащены системами предупреждения (трясётся штурвал, срабатывает сирена), которые предупреждают пилота задолго до критического момента. Именно поэтому полёты являются самым безопасным видом транспорта.
P.S. Интересный факт: птицы инстинктивно управляют углом атаки своих крыльев при посадке, чтобы не допустить сваливания! #авиация #аэродинамика #механика #физика #physics #science #наука
💡 Physics.Math.Code // @physics_lib
Сегодня разберём одно из ключевых понятий в авиации — сваливание самолёта (или «штопор» в народе). Звучит пугающе, но на самом деле это чистая физика, которую пилоты хорошо знают и умеют предотвращать.
Чтобы понять сваливание, нужно знать, как крыло создаёт подъёмную силу. Всё дело в форме крыла и угле атаки.
▪️ Форма крыла: Профиль крыла сделан так, что воздух сверху обтекает его быстрее, чем снизу. Согласно закону Бернулли, быстро движущийся воздух создаёт более низкое давление. Разница в давлении снизу и сверху и создаёт подъёмную силу.
▪️ Угол атаки: Это угол между хордой крыла (условной прямой от носка к задней кромке) и набегающим потоком воздуха. Чем больше угол атаки — тем больше подъёмная сила (но только до определённого предела!).
Представьте, что вы высовываете руку из окна движущейся машины: если вы слегка наклоните ладонь носом вверх, её будет поднимать. Чем сильнее наклоните — тем сильнее подъём. Это и есть увеличение угла атаки.
А что же такое сваливание? Вот мы и подошли к главному. Сваливание — это не отказ двигателей! Это аэродинамическая потеря подъёмной силы.
Что происходит при слишком большом угле атаки?
1. «Срыв потока»: Воздушный поток перестаёт плавно обтекать верхнюю поверхность крыла. Он становится турбулентным и отрывается от крыла.
2. Резкая потеря подъёмной силы: Начинается с задней кромки крыла и быстро движется вперёд. Крыло вместо того, чтобы «держать» в воздухе, превращается в кусок металла, создающий огромное сопротивление.
3. Падение: Самолёт перестаёт лететь и начинает «падать камнем», заваливаясь на нос или на крыло.
Ключевой момент: Сваливание может произойти на любой скорости и в любой конфигурации (с убранными или выпущенными шасси/закрылками). Главное — достигнуть критического угла атаки.
Как пилоты выводят самолёт из сваливания? Алгоритм прост и отработан до автоматизма:
1. «Нос — вниз!»: Первое и самое важное действие — уменьшить угол атаки. Пилот плавно отдаёт штурвал от себя, чтобы набегающий поток воздуха снова «прилип» к крылу.
2. Добавить тяги: Увеличить мощность двигателей для набора скорости.
Ни в коем случае нельзя тянуть штурвал на себя — это только усугубит сваливание!
Сваливание — это не мистика, а фундаментальный аэродинамический процесс. Современные самолёты оснащены системами предупреждения (трясётся штурвал, срабатывает сирена), которые предупреждают пилота задолго до критического момента. Именно поэтому полёты являются самым безопасным видом транспорта.
P.S. Интересный факт: птицы инстинктивно управляют углом атаки своих крыльев при посадке, чтобы не допустить сваливания! #авиация #аэродинамика #механика #физика #physics #science #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
3🔥113❤51👍28✍8⚡2😱2
Знакомые нам Цельсий и Фаренгейт — продукты своей эпохи.
▪️ Фаренгейт (1724): Даниил Фаренгейт был практиком. За ноль он взял температуру самой холодной зимы в Данциге (смесь льда, воды и нашатыря). Второй точкой стала температура человеческого тела (96°F — да, он немного ошибся). А 32°F для льда и 212°F для кипения воды получились уже потом. Шкала была очень точной для своего времени, но ее точки отсчета кажутся нам сегодня случайными.
▪️ Цельсий (1742): Андерс Цельсий был ученым. Его шкала была гениальной в своей простоте: 0° — таяние льда, 100° — кипение воды (при нормальном давлении, конечно). Все логично и повторяемо. Но это все еще эмпирическая шкала.
🌡 Абсолютная Идея: Лорд Кельвин и ноль
В 19 веке физики поняли: температура — это мера движения молекул. Чем быстрее они двигаются, тем выше температура. Логичный вопрос: а что будет, если движение полностью остановить? Уильям Томсон (Лорд Кельвин) предложил абсолютную термодинамическую шкалу (1848). Ее ноль — это температура, при которой тепловое движение прекращается. Это -273.15°C. Теперь мы знаем, что достичь этого нуля невозможно (согласно третьему началу термодинамики), но можно сколь угодно близко подойти.
Интересный факт: Шкала Кельвина не привязана к воде! Она основана на фундаментальных принципах работы идеальных тепловых машин (цикл Карно). Вода с ее точками кипения и замерзания — просто удобный практический эталон.
🥶 Физика на грани фантастики: Отрицательные температуры 🌡
А теперь — самое неинтуитивное. В термодинамике существует понятие отрицательной абсолютной температуры. Нет, это не холоднее абсолютного нуля. Это — горячее любой положительной температуры.
Как это возможно? Забудем на секунду о кинетической энергии. Вспомним про энтропию — меру беспорядка. Обычно, когда вы добавляете энергии системе, молекулы раскачиваются, и энтропия (беспорядок) растет. Но представьте систему с ограниченным количеством энергетических уровней, например, набор атомных спинов в магнитном поле. Есть состояние с низкой энергией (спины в одну сторону) и высокой энергией (спины в другую).
1. При абсолютном нуле все спины в основном состоянии — максимальный порядок.
2. При добавлении энергии спины начинают хаотично переворачиваться — энтропия растет (положительная температура).
3. А что, если мы принудительно перевернем большинство спинов в состояние с высокой энергией? Мы получим снова почти полный порядок (только теперь на "верхнем" уровне), но система будет обладать огромной энергией! Энтропия при этом уменьшается с ростом энергии.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
5🔥134👍51❤46🤯13🤔11✍5
📚 Физика (Американский курс физики для средней школы) [1973-1974] Комитет содействия изучения физики при Массачусетском технологическом институте
Переводчик: Ахматов А.С.
💾 Скачать книги
Конечно, учебник не свободен от ряда недостатков и не пригоден для введения его в советской средней школе по его методологической основе, недостаточности используемого математического аппарата и многим другим признакам. Тем не менее по богатству материала, оригинальности многих замыслов и по мастерству изложения ряда вопросов книга заслуживает большого внимания со стороны наших педагогов и учащихся. Именно эти соображения послужили основанием для перевода на русский язык первого издания учебника*). #физика #physics #подборка_книг #учебники #наука
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
💡 Physics.Math.Code // @physics_lib
Переводчик: Ахматов А.С.
💾 Скачать книги
Конечно, учебник не свободен от ряда недостатков и не пригоден для введения его в советской средней школе по его методологической основе, недостаточности используемого математического аппарата и многим другим признакам. Тем не менее по богатству материала, оригинальности многих замыслов и по мастерству изложения ряда вопросов книга заслуживает большого внимания со стороны наших педагогов и учащихся. Именно эти соображения послужили основанием для перевода на русский язык первого издания учебника*). #физика #physics #подборка_книг #учебники #наука
☕️ Для тех, кто захочет задонать на кофе: ВТБ:
+79616572047 (СБП) ЮMoney: 410012169999048💡 Physics.Math.Code // @physics_lib
👍39❤19🔥10🤩1🙏1😍1🤗1
This media is not supported in your browser
VIEW IN TELEGRAM
Плазма дуги будет очень сильно реагировать на мощные неодимовые магниты. Дуга начнет двигаться, изгибаться и даже вращаться под действием магнитного поля. Плазма электрической дуги — это раскаленный ионизированный газ, состоящий из положительных ионов и отрицательных электронов. Это, по сути, проводник с током.
На любой движущийся заряженный частицы (а электроны в токе как раз движутся) действует сила Лоренца. Ее направление зависит от направления тока и направления магнитного поля (определяется по правилу левой руки).
Что происходит в дуге:
1. Сила, действующая на носители тока: Магнитное поле магнитов действует на движущиеся электроны (основные носители тока в дуге) с определенной силой, перпендикулярной и их движению, и направлению поля.
2. Смещение и растяжение дуги: Поскольку сила Лоренца действует на всю дугу, она начинает "толкать" плазменный шнур. Дуга перестает быть прямой кратчайшей линией между электродами и изгибается, вытягиваясь в сторону, перпендикулярную линиям магнитного поля.
3. Эффект "магнитного дутья": Это классический технический прием для гашения электрической дуги в высоковольтных выключателях. Мощные магниты располагают так, чтобы сила Лоренца растягивала дугу, заставляя ее двигаться вдоль дугогасительной камеры. При движении дуга контактирует с холодными стенками камеры, интенсивно охлаждается, и ее сопротивление растет, пока она не погаснет.
Если прикрепить мощные неодимовые магниты с противоположными полюсами по бокам от дуги, вы увидите следующие эффекты:
▪️ Отклонение дуги: Дуга будет не просто прыгать между электродами, а будет изогнутой, похожей на арку или букву "С".
▪️ Движение дуги: Если расположить магниты особым образом (например, создав поле, перпендикулярное плоскости дуги), можно заставить дугу быстро вращаться вокруг электродов. Это выглядит как яркое, светящееся "огненное колесо".
▪️ Удлинение и охлаждение: Растянутая дуга становится длиннее, что приводит к ее охлаждению. Она может стать более бледной и менее стабильной.
▪️ Ускоренное гашение: Если источник питания не может поддерживать растянутую и охлажденную дугу, она может погаснуть быстрее, чем без магнитов.
1. Плазменные резаки и сварочные аппараты: В некоторых современных плазменных резаках используются магнитные системы для стабилизации и вращения плазменной струи. Это повышает качество и равномерность реза.
2. Исследования термоядерного синтеза (Токамак): Это самый масштабный пример. Гигантские сверхпроводящие магниты используются для удержания и стабилизации плазмы, не давая ей коснуться стенок реактора.
3. Высоковольтные выключатели: Как уже упоминалось, для принудительного гашения дуги.
Если вы прикрутите мощные неодимовые магниты к электродам с дугой, вы не просто увидите реакцию плазмы — вы станете свидетелем фундаментального физического явления, которое лежит в основе многих современных технологий. Дуга будет активно изгибаться и двигаться под действием магнитного поля, демонстрируя прямую связь между электричеством и магнетизмом. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥42👍20❤12⚡7🤯2
This media is not supported in your browser
VIEW IN TELEGRAM
И вот мы, люди 21 века, смотрим на эту семидесятилетнюю технологию, как на чудо
✨ Как сделать сварочный аппарат из карандаша и лезвия
Какой флюс для пайки самый лучший на сегодняшний день?
🪙 Разбираемся в пайке: Советы по соотношению олова и свинца и их влиянию
🔥 10 флюсов для пайки: сравнение, тесты и какой реально стоит использовать мастеру
✨ Мартенсит
⛓️💥 Какие только технологии не применяли в СССР
🔥 Spot-сварка
💥 Импульсная аргонодуговая сварка
💥 Электросварка и плавление электрода 💫
#физика #опыты #сопромат #сварка #пайка #видеоуроки #physics #science #эксперименты #наука
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65❤32🔥24🆒2🗿1
💫 Ричард Фейнман: 7 лекций о связи математики и физики // Характер физических законов
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
Сборник лекций, прочитанных во время традиционных Мессенджеровских чтений в Кориеллском университете (в 1964 г.) известным физиком-теоретиком Р. Фейнманом. В этих лекциях, обращаясь к очень широкой аудитории, Фейнман рассказывает о самых фундаментальных законах природы, о том, как их открывают, каковы их особенности. Во второе издание перевода (1-е-«Мир», 1968 г.) внесены некоторые редакционные изменения.
▪️ Лекция 1. Пример физического закона - закон тяготения
▪️ Лекция 2. Связь математики с физикой
▪️ Лекция 3. Великие законы сохранения
▪️ Лекция 4. Симметрия физических законов
▪️ Лекция 5. Различие прошлого и будущего
▪️ Лекция 6. Вероятность и неопределенность - квантовомеханический взгляд на природу
▪️ Лекция 7. В поисках новых законов
#physics #физика #лекции #видеоуроки #научные_фильмы #наука
💡 Physics.Math.Code // @physics_lib
❤80👍37❤🔥6🔥4⚡1😍1
Media is too big
VIEW IN TELEGRAM
🧊 Интересный опыт: Лёд под проволокой
Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?
Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки
💡 Physics.Math.Code // @physics_lib
Что будет происходить с ледяным бруском, если на него будет действовать тонкая проволока, создавая большое давление?
Интересный факт: Температура плавления под давлением почти постоянна 0 ° C при давлениях выше тройной точки, равной 611,7 Па, когда вода может существовать только в твердой или жидкой фазах, при атмосферном давлении (100 кПа) примерно до 10 МПа. При повышении давления выше 10 МПа температура плавления под давлением снижается как минимум до -21,9 ° C при 209,9 МПа. #physics #физика #опыты #термодинамика #эксперименты #science #наука #видеоуроки
💡 Physics.Math.Code // @physics_lib
🔥45👍32❤11🤯2😱2🤩2❤🔥1
В коридоре Оксфордского университета стоит невзрачный на вид прибор, который тихо звонит уже почти 185 лет. Этот эксперимент начался в 1840 году, и с тех пор Оксфордский электрический звонок (также известный как Clarendon Dry Pile) работает практически без остановок, став символом невероятной долговечности и загадки для научного сообщества.
Устройство выглядит просто: два латунных колокольчика, между которыми колеблется металлический шарик-маятник диаметром около 4 мм. Под колокольчиками скрыта сухая батарея — так называемый «замбониев столб», изобретенный итальянским физиком Джузеппе Замбони в 1812 году.
Батарея создает высокое напряжение (предположительно около 2 кВ). Когда маятник касается одного колокольчика, он заряжается и отталкивается от него, притягиваясь к противоположному. При касании второго колокольчика процесс повторяется. Шарик колеблется с частотой 2 Гц, что приводит к непрерывному звону.
Ключевая особенность — чрезвычайно низкое энергопотребление. Батарея отдает крошечный ток, которого хватило на века работы. Сама батарея герметично залита серой, что защищает ее от влаги и окисления.
Точный химический состав батареи остается неизвестным. Ученые предполагают, что это усовершенствованный вариант батареи Замбони, состоящий из тысяч чередующихся слоев: металлической фольги (возможно, цинк) и бумажных дисков, пропитанных электролитом (например, диоксидом марганца).
Однако вскрыть батарею для изучения невозможно — это прервет уникальный эксперимент. Профессор Роберт Уокер, приобретший звонок в 1840 году, не оставил записей о ее устройстве, и тайна остается нераскрытой.
В 1984 году звонок был внесен в Книгу рекордов Гиннесса как «самый долговечный источник энергии». По подсчетам, он совершил уже более 10 миллиардов ударов.
Звонок демонстрирует принципы электростатики и пределы энергоэффективности. Его используют в дискуссиях о втором законе термодинамики, хотя сам он не является «вечным двигателем» — работа закончится, когда батарея исчерпает ресурс или износятся механические части.
Можно ли услышать звонок сегодня — да. Звонок до сих пор находится в Кларендонской лаборатории Оксфордского университета, за двумя стеклянными панелями (они приглушают звук). Услышать его могут студенты, ученые и туристы, но из-за тихого звука требуется прислушаться. #электродинамика #магнетизм #физика #опыты #physics #наука #эксперименты
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤96🔥68👍43🤔11⚡5💯3🆒1