Physics.Math.Code
142K subscribers
5.2K photos
2.03K videos
5.81K files
4.43K links
VK: vk.com/physics_math
Чат инженеров: @math_code
Учебные фильмы: @maths_lib
Репетитор IT mentor: @mentor_it
YouTube: youtube.com/c/PhysicsMathCode

№ 6045941532

Обратная связь: @physicist_i
Download Telegram
✈️Почему мертвая петля называется «мертвой»?

На заре авиации считалось, что невозможно управлять аэропланом, который расположен носом кверху. Когда машина оказывалась в таком положении, пилоты теряли самообладание, не справлялись с выводом аппарата из тангажа в 90° и вследствие этого гибли. Российский летчик Петр Нестеров сначала теоретически рассчитал, что выход из мертвой петли возможен. Он так доверял своим расчетам, что перед выполнением «мертвой петли» не пристегнулся ремнями к самолету.
Расчеты оказались правильными, и в верхней точке петли он не выпал, как предостерегали некоторые, — центробежная сила прижимала лётчика к сиденью. Он же впервые выполнил эту фигуру 9 сентября 1913 года.

Эта идея, что «в воздухе везде опора», зародилась у Нестерова еще до 1912 года. «Совершить «мертвую петлю» было для меня вопросом самолюбия, — ведь более полугода я исследовал этот вопрос на бумаге», — говорил потом авиатор. 27 августа 1913 года над Сырецким полем в Киеве Нестеров рискнул и впервые в мире исполнил этот маневр. Замкнутую петлю в вертикальной плоскости он выполнил на самолете «Ньюпор-4» с двигателем «Гном» с 70 л. с. Так российский летчик положил начало высшему пилотажу. #физика #physics #авиация #факты #опыты #эксперименты #механика #кинематика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍273🔥6213😱5🫡5💯3🤓31👏1
This media is not supported in your browser
VIEW IN TELEGRAM
🌖Лунные либрации

Хотя Луна и вращается вокруг своей оси, она всегда обращена к Земле одной и той же стороной, то есть обращение Луны вокруг Земли и вращение вокруг собственной оси синхронизировано. Эта синхронизация вызвана трением приливов, которые производила Земля в оболочке Луны. Согласно законам механики, Луна ориентирована в поле тяготения Земли так, что на Землю направлена большая полуось лунного эллипсоида. Явление либрации, открытое Галилео Галилеем в 1635 году, позволяет наблюдать около 59 % лунной поверхности. Дело в том, что вокруг Земли Луна обращается с переменной угловой скоростью вследствие эксцентриситета лунной орбиты (вблизи перигея движется быстрее, вблизи апогея медленнее), в то время как вращение спутника вокруг собственной оси равномерно. Это позволяет увидеть с Земли западный и восточный края обратной стороны Луны (оптическая либрация по долготе). Кроме того, в связи с наклоном оси вращения Луны к плоскости её орбиты с Земли можно увидеть северный и южный края обратной стороны Луны (оптическая либрация по широте).

Существует ещё физическая либрация, обусловленная колебанием спутника вокруг положения равновесия в связи со смещённым центром тяжести, а также в связи с действием приливных сил со стороны Земли. Эта физическая либрация имеет величину 0,02° по долготе с периодом 1 год и 0,04° по широте с периодом 6 лет. Из-за рефракции в атмосфере Земли при наблюдении Луны низко над горизонтом наблюдается приплюснутость её диска. #научные_фильмы #физика #механика #gif #астрономия #факты #космос #physics

💡 Physics.Math.Code // @physics_lib
👍44🔥26❤‍🔥85😱1🌚1😈1🤝1
This media is not supported in your browser
VIEW IN TELEGRAM
🌕 Цвет звезды в зависимости от её температуры 🪐

Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif

💡 Physics.Math.Code // @physics_lib
🔥95👍6414😍4🙈3❤‍🔥2🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
🌕 Цвет звезды в зависимости от её температуры 🪐

Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif

💡 Physics.Math.Code // @physics_lib
👍82🔥2812❤‍🔥10🙈7
🔒 Как можно разломать замок голыми руками: опыт с галлием 🪙

Реакция галлия и алюминия в природе маловероятна. Но вместе с тем, именно она, может разрушить даже самый крепкий замок, сделанный из металла. Интересно то, что для подобного трюка требуется ничтожное количество галлия — достаточно просто капнуть расплавом и слегка поцарапать замок, чтобы снять оксидную пленку и обеспечить протекание реакции. Спустя 5 часов после начала реакции алюминия и галлия замок станет настолько хрупким, что с ним справится и ребенок. Галлий — жидкий металл с чрезвычайно низкой температурой плавления, который можно расплавить, просто взяв в руки. Он не встречается в природе в чистом виде и обладает рядом интересных свойств. Галлий разрушает алюминий, но абсолютно «безвреден» для олова или индия, с которыми часто вступает в различные сплавы, которые применяют в качестве различных термоинтерфейсов в электронике.

Разрушение в данном конкретном случае проявляется из-за образования после реакции галлия и алюминия небольшого оксидного слоя на поверхности сплава двух металлов. Из-за неравномерности этого слоя образуются трещины. Благодаря своеобразной кристаллической структуре металлического галлия он не просто окисляет алюминий, буквально на глазах, но и проникает в эти трещины, пропитывая поверхность насквозь. Именно поэтому мы можем наблюдать что после реакции галлий фактически разрушает алюминий, и последний крошится в руках легче лёгкого. #физика #факты #химия #опыты #эксперименты #physics

💡 Physics.Math.Code
// @physics_lib
👍60🔥1910🤔5😱2❤‍🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
💫 «Гроб Мухаммеда» — опыт, демонстрирующий эффект Мейснера в сверхпроводниках

По преданию, гроб с телом пророка Мухаммеда висел в пространстве без всякой поддержки, поэтому этот эксперимент называют «гроб Мухаммеда».

Сверхпроводимость существует только при низких температурах (в ВТСП-керамиках — при температурах ниже 150 К), поэтому предварительно вещество охлаждают, например, при помощи жидкого азота. Далее магнит кладут на поверхность плоского сверхпроводника. Даже в полях, магнитная индукция которых составляет 0,001 Тл, заметно смещение магнита вверх на расстояние порядка сантиметра. При увеличении поля вплоть до критического магнит поднимается всё выше.

Одним из свойств сверхпроводников является выталкивание магнитного поля из области сверхпроводящей фазы. Отталкиваясь от неподвижного сверхпроводника, магнит «всплывает» сам и продолжает «парить» до тех пор, пока внешние условия не выведут сверхпроводник из сверхпроводящей фазы. В результате этого эффекта магнит, приближающийся к сверхпроводнику, «видит» магнит одинаковой полярности и точно такого же размера, — что и вызывает левитацию. #физика #факты #сверхпроводимость #электродинамика #опыты #эксперименты #physics

💡 Physics.Math.Code
// @physics_lib
👍91🔥32122🤯2🙈2🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
Охлаждение сверхпроводника жидким азотом способствует его следованию вдоль магнитной ленты

Эффект Мейсснера — полное вытеснение магнитного поля из объёма проводника при его переходе в сверхпроводящее состояние. Впервые явление наблюдалось в 1933 году немецкими физиками В. Мейснером и Р. Оксенфельдом.

При охлаждении сверхпроводника, находящегося во внешнем постоянном магнитном поле, в момент перехода в сверхпроводящее состояние магнитное поле полностью вытесняется из его объёма. Этим сверхпроводник качественно отличается от «обычного» материала с высокой проводимостью.

Отсутствие магнитного поля в объёме проводника позволяет заключить из общих законов магнитного поля, что в нём существует только поверхностный ток. Он физически реален и занимает некоторый тонкий слой вблизи поверхности. Например, в случае помещённого во внешнее поле шара (см. рис.) этот ток будет формироваться носителями заряда, движущимися в приповерхностном слое по кольцевым траекториям, лежащим в плоскостях, ортогональных плоскости рисунка и полю на бесконечности (радиус колец меняется от радиуса шара в середине до нуля вверху и внизу).

Роль идеальной проводимости состоит в том, что появившийся поверхностный ток протекает бездиссипативно и неограниченно долго — при конечном сопротивлении среда не смогла бы реагировать на наложение поля таким способом.

Магнитное поле возникшего тока компенсирует в толще сверхпроводника внешнее поле (уместна аналогия с экранированием электрического поля индуцированным на поверхности металла зарядом). В этом отношении сверхпроводник ведёт себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, так как внутри него намагниченность равна нулю.
#физика #факты #сверхпроводимость #электродинамика #опыты #эксперименты #physics

💡 Physics.Math.Code
// @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
48👍47🔥17❤‍🔥43
This media is not supported in your browser
VIEW IN TELEGRAM
🌕 Цвет звезды в зависимости от её температуры 🪐

Цвет звезд обусловлен их химическим составом, температурой, возрастом и относительным движением относительно Земли. Из-за земной атмосферы мы видим наше Солнце желтым, а иногда красным или даже оранжевым! Однако на самом деле оно белого или близкого к белому цвету. Самые горячие звезды кажутся голубыми, поскольку их излучение больше склоняется к синей части спектра. Эта связь между температурой и излучаемым излучением является настолько важной и особенной характеристикой звезд, что астрономы Эйнар Герцшпрунг и Генри Норрис Рассел в 1900-х годах независимо друг от друга придумали классификацию звезд на основе этой переменной. Эта зависимость изображена на графике, который они назвали диаграммой Герцшпрунга-Рассела, где температура отображается в зависимости от светимости или цвета звезды. Более горячие звезды находятся в синей части диаграммы, а более холодные - в красной. Этот график не только помог классифицировать звезды, но и помог понять их эволюцию, поэтому он очень важен. Если звезда удаляется от нас, то излучаемый ею свет смещается в красную часть спектра, а если она движется к нам, то ее свет смещается в синюю часть спектра. Этот эффект называется эффектом Доплера и очень важен при обработке изображений, полученных с помощью телескопов. #факты #астрономия #физика #physics #видеоуроки #научные_фильмы #gif

💡 Physics.Math.Code
// @physics_lib
🔥89👍25❤‍🔥1411🤔73🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
⚙️ Авиационный гироскоп

✈️ Гироскопы в авиации позволяют стабилизировать полёт и контролировать положение самолёта относительно горизонта.
Гирокомпасы (роторные гироскопы) используются для определения координат самолёта в пространстве при отсутствии ориентиров (например, в условиях высокой облачности). Без гирокомпасов невозможна работа систем автоматического пилотирования. Отдельно установленные гироскопы применяют для определения отклонений курса, крена и тангажа: если воздушное судно начнёт отклоняться от курса, а также крениться в продольной или поперечной плоскости, датчик это зафиксирует. Также в авиации используются лазерные гироскопы в составе инерциальных навигационных систем, позволяющих определять местоположение самолёта без опоры на внешние источники информации.

История гироскопа берет свое начало в первой половине XIX века, когда физики и инженеры стали пытаться понять и контролировать движение объектов. Однако основоположником современного гироскопа по праву можно считать Жана Бернара Леона Фуко — французского физика и изобретателя, который в 1852 году поставил эксперимент, доказывающий вращение Земли вокруг своей оси. Фуко показал, что объект, свободно подвешенный и способный вращаться, будет сохранять свою ориентацию в пространстве, даже если окружающая среда движется.

Принцип работы гироскопа основан на законе сохранения углового момента: если вращающийся объект не испытывает внешних воздействий, его ориентация будет оставаться постоянной. При включении ротор начинает вращаться, создавая эффект гироскопической устойчивости. Этот эффект означает, что гироскоп, начав вращаться, будет сопротивляться изменениям угловой ориентации. Это свойство позволяет гироскопу оставаться стабильным, и даже при изменении положения основы, его ось будет сохранять своё направление в пространстве.

Главный принцип, лежащий в основе работы гироскопа, заключается в явлении, которое называется угловым моментом. Когда ротор начинает вращаться с высокой скоростью, он накапливает значительный угловой момент, и эта величина становится устойчивой. Если на гироскоп не воздействуют внешние силы, то он будет сохранять своё направление, независимо от движения окружающей его платформы. Другой важный эффект, связанный с гироскопами, — это прецессия. Она проявляется, когда на ротор гироскопа оказывается внешняя сила, что вызывает движение его оси вращения в перпендикулярной плоскости. Это свойство нашло применение в инерциальных системах навигации, где гироскопы помогают определить изменение ориентации и положения транспортного средства.

В начале XX века гироскоп получил широкое применение в морской навигации благодаря немецкому инженеру Герману Аншютцу-Кемпе. В 1908 году он разработал первый рабочий гирокомпас, который использовал гироскоп для определения направления. Этот компас оказался особенно полезным в условиях, где традиционные магнитные компасы были подвержены ошибкам, например, вблизи крупных металлических объектов или полюсов Земли. Благодаря гирокомпасу корабли могли двигаться с точной ориентацией, независимо от магнитных аномалий. С этого момента началась настоящая эра применения гироскопов в навигации. #физика #physics #авиация #факты #опыты #эксперименты #механика #кинематика

💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥109👍6816🗿51
🔒 Как можно разломать замок голыми руками: опыт с галлием 🪙

Реакция галлия и алюминия в природе маловероятна. Но вместе с тем, именно она, может разрушить даже самый крепкий замок, сделанный из металла. Интересно то, что для подобного трюка требуется ничтожное количество галлия — достаточно просто капнуть расплавом и слегка поцарапать замок, чтобы снять оксидную пленку и обеспечить протекание реакции. Спустя 5 часов после начала реакции алюминия и галлия замок станет настолько хрупким, что с ним справится и ребенок. Галлий — жидкий металл с чрезвычайно низкой температурой плавления, который можно расплавить, просто взяв в руки. Он не встречается в природе в чистом виде и обладает рядом интересных свойств. Галлий разрушает алюминий, но абсолютно «безвреден» для олова или индия, с которыми часто вступает в различные сплавы, которые применяют в качестве различных термоинтерфейсов в электронике.

Разрушение в данном конкретном случае проявляется из-за образования после реакции галлия и алюминия небольшого оксидного слоя на поверхности сплава двух металлов. Из-за неравномерности этого слоя образуются трещины. Благодаря своеобразной кристаллической структуре металлического галлия он не просто окисляет алюминий, буквально на глазах, но и проникает в эти трещины, пропитывая поверхность насквозь. Именно поэтому мы можем наблюдать что после реакции галлий фактически разрушает алюминий, и последний крошится в руках легче лёгкого. #физика #факты #химия #опыты #эксперименты #physics

💡 Physics.Math.Code
// @physics_lib
1👍528🔥8🤨8❤‍🔥7