This media is not supported in your browser
VIEW IN TELEGRAM
🧲 С увеличением частоты вращения диска с магнитами наблюдается интересный эффект: ферромагнитная жидкость начинает вращаться в противоположную сторону. Связано это с тем, что достигается необходимое смещение фазы, когда предыдущая «пучность» жидкости (сгусток ферро-частиц) оказывается ближе к магниту, приближающемуся сзади, чем к магниту, который ушел вперед. Происходит смещение фаз, жидкость начинает вращаться в противоположную сторону. Иногда такой же эффект наблюдается оптике (Смотри Муаровые узоры).
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
👍68🔥30❤17🤯4❤🔥2😱1
Media is too big
VIEW IN TELEGRAM
Фильм поделён на три части:
1. Условия возникновения электрического тока (начинается с 00:21).
2. Источники электрического тока (03:22).
3. Электрический ток в металлах и электролитах (08:53).
Электрический ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).
При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны.
Некоторые этапы открытия электрического тока:
▪️ 1600 год — итальянский учёный Гальвани обнаружил, что две металлические пластины, помещённые в раствор соли, начинают двигаться друг к другу. Это явление было названо «гальваническим эффектом».
▪️ 1775 год — Алессандро Вольта создал первый электрический элемент («вольтов столб»), который состоял из двух металлических пластин, разделённых изолятором. При соединении пластин с помощью ключа учёный обнаружил, что между ними возникает электрический ток.
▪️ 1820 год — Майкл Фарадей открыл, что при пропускании электрического тока через проводник вокруг него образуется магнитное поле. Это открытие позволило разработать новые способы передачи энергии на большие расстояния, такие как телеграф и телефон.
Некоторые свойства электрического тока:
▪️ Тепловое действие — ток нагревает проводники. Это используется в электрических обогревателях и утюгах.
▪️ Магнитное действие — ток образует магнитное поле вокруг проводника, по которому течёт. Это свойство применяется в электродвигателях и генераторах.
▪️ Химическое действие — ток вызывает химические реакции, например, в процессе получения металлов из руд (электролиз).
Некоторые мифы об электрическом токе:
▪️ Чем больше напряжение, тем больше опасность — на самом деле опасна сила тока, а не напряжение.
▪️ Вода проводит электричество — чистая вода почти полностью изолятор, но грязная или набранная из колодца вода содержит множество растворённых веществ, которые проводят электричество.
▪️ Резиновые перчатки и обувь не проводят электричество — только профессиональные диэлектрические боты и перчатки, испытанные на заводе высоким напряжением, могут служить защитой от электрического тока.
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤65👍30🔥17⚡10🤩1
Media is too big
VIEW IN TELEGRAM
К первой половине 19 века понимание электромагнетизма улучшилось благодаря многочисленным экспериментам и теоретическим работам. В 1780-х годах Шарль-Огюстен де Кулон установил свой закон электростатики. В 1825 году Андре-Мари Ампер опубликовал свой закон силы. В 1831 году Майкл Фарадей открыл электромагнитную индукцию в ходе своих экспериментов и предложил силовые линии для ее описания. В 1834 году Эмиль Ленц решил проблему направления индукции, а Франц Эрнст Нейман записал уравнение для расчета индуцированной силы при изменении магнитного потока. Однако эти экспериментальные результаты и правила были плохо организованы и иногда сбивали ученых с толку. Требовалось всеобъемлющее изложение принципов электродинамики.
Эта работа была выполнена Джеймсом К. Максвеллом на основе серии статей, опубликованных с 1850-х по 1870-е годы.
В 1850-х годах Максвелл работал в Кембриджском университете, где на него произвела впечатление концепция силовых линий Фарадея. Фарадей создал эту концепцию под впечатлением от Роджера Босковича, физика, который также повлиял на работу Максвелла. Позже, Оливер Хевисайд изучил Трактат Максвелла по электричеству и магнетизму и использовал векторное исчисление, чтобы синтезировать более 20 уравнений Максвелла в 4 узнаваемых, которые используют современные физики. Уравнения Максвелла также вдохновили Альберта Эйнштейна на разработку специальной теории относительности.
Экспериментальное доказательство уравнений Максвелла было продемонстрировано Генрихом Герцем в серии экспериментов в 1890-х годах. После этого уравнения Максвелла были полностью приняты учеными. #научные_фильмы #физика #электродинамика #электричество #магнетизм #science #видеоуроки #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
❤67👍41🔥13⚡1🤩1
📙 Физика, пособие для поступающих в вузы [1979] Кембровский Г.С., Галко С.И., Ткачев Л.И.
💾 Скачать книгу
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
💾 Скачать книгу
Математик может говорить все, что взбредет ему в голову, но физик обязан сохранять хотя бы крупицу здравого смысла.
— Джозайя Уиллард Гиббс, физик
📚 Сборник задач по общему курсу физики [3 книги] [1998-2000]
📚 Курс общей физики в 5 томах [2021] Савельев И.В.
📚 Наука. Величайшие теории [50 выпусков] + Спец. выпуск
📚 Курс теоретической физики [2 тома] [1972] А. С. Компанеец
#физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
❤27👍18🔥9🤩4
Физика,_пособие_для_поступающих_в_вузы_1979_Кембровский_Г_С_,_Галко.djvu
40.7 MB
📙 Физика, пособие для поступающих в вузы [1979] Кембровский Г.С., Галко С.И., Ткачев Л.И.
Пособие включает необходимый для подготовки к экзаменам в вуз материал. Четвертое издание переработано с учетом школьной программы по физике (на 1979 год).
Пособие составлено в соответствии с программой вступительных экзаменов в вузы. Оно содержит основной теоретический материал по элементарной физике, примеры решения задач с соответствующим анализом результатов и выводами, вопросы для самоконтроля, а также задачи для самостоятельного решения. Книга предназначена для учащихся старших классов, готовящихся к сдаче вступительных экзаменов по физике в вузы, а также для слушателей заочных и вечерних подготовительных курсов. Может быть использована преподавателями физики средних школ и техникумов. Издание 1970 года. #физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
Пособие включает необходимый для подготовки к экзаменам в вуз материал. Четвертое издание переработано с учетом школьной программы по физике (на 1979 год).
Пособие составлено в соответствии с программой вступительных экзаменов в вузы. Оно содержит основной теоретический материал по элементарной физике, примеры решения задач с соответствующим анализом результатов и выводами, вопросы для самоконтроля, а также задачи для самостоятельного решения. Книга предназначена для учащихся старших классов, готовящихся к сдаче вступительных экзаменов по физике в вузы, а также для слушателей заочных и вечерних подготовительных курсов. Может быть использована преподавателями физики средних школ и техникумов. Издание 1970 года. #физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
👍40❤15🔥8🤩5🥰2⚡1
Media is too big
VIEW IN TELEGRAM
Радиосвязь работает благодаря передаче информации с использованием электромагнитных волн (радиоволн). Сигнал преобразуется в радиоволны, распространяется в пространстве и принимается другим устройством. Процесс радиосвязи включает несколько этапов:
1. Формирование сигнала. Источник передаёт данные (голос, текст или другие виды информации) в радиопередатчик.
2. Модуляция. Передатчик преобразует данные в радиоволны, изменяя параметры несущей волны (амплитуду, частоту или фазу).
3. Передача. Сигнал передаётся через антенну и распространяется в радиопространстве.
4. Приём. Приёмное устройство улавливает сигнал, переданный через антенну, и демодулирует его для восстановления исходных данных.
5. Обратная связь. Для двусторонней связи процесс повторяется, позволяя участникам общаться в реальном времени.
Некоторые виды модуляции, используемые в радиосвязи:
▪️ Амплитудная модуляция (АМ). Амплитуда несущего сигнала изменяется в соответствии с величиной полезного сигнала.
▪️ Частотная модуляция (ЧМ). Амплитуда несущей волны остаётся постоянной, но её частота изменяется в зависимости от величины полезного сигнала.
▪️ Фазовая модуляция (ФМ). У несущего сигнала не меняется ни частота, ни амплитуда, но участки сигнала, передающие «0», сдвинуты по фазе относительно участка, передающего «1».
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм
⚡️ Фигуры Лихтенберга
🧲 ВЧ магнитное поле и ферромагнитная жидкость
⚡️ Обучающий фильм Электрический ток [СССР]
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥72👍31❤14⚡6❤🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
🧲☺️ Визуализация магнитного поля
🧲 Насос без подвижных частей может перекачивать жидкость, но как?
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм
⚡️ Фигуры Лихтенберга
🧲 ВЧ магнитное поле и ферромагнитная жидкость
⚡️ Обучающий фильм Электрический ток [СССР]
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
🧲 Насос без подвижных частей может перекачивать жидкость, но как?
🧲 Магнит и медь. Закон Фарадея. Магнитное демпфирование
📚 Искусство схемотехники, 4-е издание (в 3 томах) [1993—2014] Пауль Хоровиц, Уинфилд Хилл
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм
⚡️ Фигуры Лихтенберга
🧲 ВЧ магнитное поле и ферромагнитная жидкость
⚡️ Обучающий фильм Электрический ток [СССР]
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33❤6🔥6⚡2🆒2😱1
Media is too big
VIEW IN TELEGRAM
A demonstration showing the magnetic field lines surrounding three different simple coil configurations. (Solenoid)
#физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #magnetism
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41🔥9❤8⚡3
В этом посте предлагаю обсудить вопросы, связанные с электроникой и цифровой схемотехникой. Всё это будет полезно начинающим.
◾️ 1. С чего начать изучать электронику?
◾️ 2. Стоит ли прочитать учебник по физике, раздел "электричество и магнетизм" ?
◾️ 3. Лучше начинать с аналоговых приборов или сразу переходить к изучению цифровой схемотехники?
◾️ 4. Нужны ли хорошие знания электроники человеку, занимающемуся программированием встраиваемых систем?
◾️ 5. Стоит ли пытаться травить платы самостоятельно или лучше заказать?
◾️ 6. Хлористое железо, лимонная кислота или фоторезистор?
◾️ 7. Что нужно спаять первым делом? С чего начинать практику?
◾️ 8. Какой набор инструментов/приборов хватит начинающему радиолюбителю?
#электроника #схемотехника #радиофизика #ночной_чат #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍66❤14🔥14🗿3❤🔥2👏2🙈2⚡1
Media is too big
VIEW IN TELEGRAM
📻 «Окопное радио» ⚡️ (также известное как «foxhole radio») — самодельный радиоприёмник, который использовали солдаты во время Второй мировой войны для прослушивания местных радиостанций.
Конструкция: в качестве детектора радиоволн применялось лезвие безопасной бритвы, которое действовало как кристалл, а проволокой, английской булавкой или грифелем графитового карандаша служили «кошачьими усами». Окопные рации состояли из проволочной антенны, катушки из проволоки, служившей индуктором, наушников и некоего подобия самодельного диодного детектора для восстановления выпрямления сигнала. Детекторы состояли из электрического контакта между двумя разными проводниками с полупроводниковой плёнкой коррозии между ними. Их делали из различных подручных материалов. Один из распространённых типов состоял из окисленного лезвия бритвы (ржавого или обгоревшего), к которому булавкой прижимался грифель карандаша. Оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия работали как диоды, поэтому солдат водил грифелем карандаша по поверхности, пока в наушниках не начинала звучать радиостанция. Другой конструкцией детектора был угольный стержень батарейки, лежавший на краях двух вертикальных бритвенных лезвий, по образцу «микрофонного» детектора 1879 года Дэвида Эдварда Хьюза.
Принцип работы: оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия действовали как диоды, поэтому солдат водил карандашным грифелем по поверхности до тех пор, пока в наушниках не зазвучит радиостанция.
Особенности: приёмник не имел источника питания и питался от энергии, получаемой от радиостанции.
История: одна из первых газетных статей об окопном радиоприёмнике была опубликована в «Нью-Йорк Таймс» 29 апреля 1944 года. Этот радиоприёмник был собран рядовым Элдоном Фелпсом из Энида, штат Оклахома, который позже утверждал, что именно он изобрёл эту конструкцию. Он был довольно примитивным: лезвие бритвы, воткнутое в кусок дерева, служило детектором, а конец антенного провода — кошачьим усом. Ему удавалось принимать передачи из Рима и Неаполя. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
⚡️ Физические основы радиопередачи [1989] Киностудия Леннаучфильм
📗 Первая книга радиолюбителя [1961] Костыков Ю. В., Ермолаев Л. Н.
💡 Physics.Math.Code // @physics_lib
Конструкция: в качестве детектора радиоволн применялось лезвие безопасной бритвы, которое действовало как кристалл, а проволокой, английской булавкой или грифелем графитового карандаша служили «кошачьими усами». Окопные рации состояли из проволочной антенны, катушки из проволоки, служившей индуктором, наушников и некоего подобия самодельного диодного детектора для восстановления выпрямления сигнала. Детекторы состояли из электрического контакта между двумя разными проводниками с полупроводниковой плёнкой коррозии между ними. Их делали из различных подручных материалов. Один из распространённых типов состоял из окисленного лезвия бритвы (ржавого или обгоревшего), к которому булавкой прижимался грифель карандаша. Оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия работали как диоды, поэтому солдат водил грифелем карандаша по поверхности, пока в наушниках не начинала звучать радиостанция. Другой конструкцией детектора был угольный стержень батарейки, лежавший на краях двух вертикальных бритвенных лезвий, по образцу «микрофонного» детектора 1879 года Дэвида Эдварда Хьюза.
Принцип работы: оксидный слой на лезвии и точечный контакт грифеля карандаша образуют полупроводниковый диод Шоттки и пропускают ток только в одном направлении. Только определённые участки лезвия действовали как диоды, поэтому солдат водил карандашным грифелем по поверхности до тех пор, пока в наушниках не зазвучит радиостанция.
Особенности: приёмник не имел источника питания и питался от энергии, получаемой от радиостанции.
История: одна из первых газетных статей об окопном радиоприёмнике была опубликована в «Нью-Йорк Таймс» 29 апреля 1944 года. Этот радиоприёмник был собран рядовым Элдоном Фелпсом из Энида, штат Оклахома, который позже утверждал, что именно он изобрёл эту конструкцию. Он был довольно примитивным: лезвие бритвы, воткнутое в кусок дерева, служило детектором, а конец антенного провода — кошачьим усом. Ему удавалось принимать передачи из Рима и Неаполя. #физика #опыты #эксперименты #наука #science #physics #электродинамика #магнетизм #видеоуроки #схемотехника #радиофизика
📗 Первая книга радиолюбителя [1961] Костыков Ю. В., Ермолаев Л. Н.
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
👍123❤35🔥30🤷♂3👏3❤🔥2⚡2🤩2