💡 DeepSeek выложили новый open-source проект — LPLB.
Это экспериментальный балансировщик нагрузки для моделей Mixture-of-Experts (MoE).
В репозитории описано, как система:
• динамически перераспределяет экспертов, опираясь на статистику нагрузки;
• создаёт реплики с учётом топологии кластера;
• решает оптимальное распределение токенов по экспертам через LP-решатель, работающий прямо на GPU (cuSolverDx + cuBLASDx);
• использует метрики загрузки, полученные вручную, через torch.distributed или через буферы Deep-EP.
Гайд показывает, как может выглядеть умный и точный балансировщик для больших MoE-архитектур.
GitHub: https://github.com/deepseek-ai/LPLB
ai_machinelearning_big_data
#DeepSeek #LPLB #MoE #AIInfrastructure #OpenSource
Это экспериментальный балансировщик нагрузки для моделей Mixture-of-Experts (MoE).
В репозитории описано, как система:
• динамически перераспределяет экспертов, опираясь на статистику нагрузки;
• создаёт реплики с учётом топологии кластера;
• решает оптимальное распределение токенов по экспертам через LP-решатель, работающий прямо на GPU (cuSolverDx + cuBLASDx);
• использует метрики загрузки, полученные вручную, через torch.distributed или через буферы Deep-EP.
Гайд показывает, как может выглядеть умный и точный балансировщик для больших MoE-архитектур.
GitHub: https://github.com/deepseek-ai/LPLB
ai_machinelearning_big_data
#DeepSeek #LPLB #MoE #AIInfrastructure #OpenSource
❤37🔥22👍17😁2🥰1🙉1