384K subscribers
4.49K photos
869 videos
17 files
4.92K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⚡️ Ai2 представила Olmo 3 - новую линейку полностью открытых моделей (7B и 32B), которые по качеству догоняют лидеров рынка.

Главное:
• 32B base - сильная base-модель, которая работает на уровне Qwen 2.5 и опережает на ряде бенчмарков Google Gemma 3.
• 7B instruct и 7B reasoning - лучшие среди западных моделей
• 32B Think - полностью открытая 32B-модель для сложных рассуждений (почти на уровне Qwen 3 8B/32B)

Все данные, код, чекпоинты в открытом доступе.

Olmo 3 32B - закрыла важный пробел, так как у Qwen нет открытой 32B base-версии.

32B спокойно запускаестя на одной 80GB-GPU или даже на мощном ноутбуке.

🟠Paper: https://allenai.org/papers/olmo3
🟠Artifacts: https://huggingface.co/collections/allenai/olmo-3
🟠Demo: https://playground.allenai.org
🟠Blog: https://allenai.org/blog/olmo3

@ai_machinelearning_big_data

#Olmo #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
40🔥20👍15🥰9🐳2🦄2😁1
This media is not supported in your browser
VIEW IN TELEGRAM
Nano Banana очень хороша для генерации схем и слайдов, а как насчёт сделать из них видео. 🎬

Google Vids вместе с Gemini позволяет автоматически превратить презентацию Google Slides в полноценный видеоролик: со сценарием, озвучкой и музыкой.

Вы просто загружаете презентацию, выбираете стиль - и система сама собирает видео из ваших слайдов.

https://workspace.google.com/blog/product-announcements/october-workspace-drop-ai-storytelling-research-and-data-protections

@ai_machinelearning_big_data

#Gemini #google #llm
👍6820🔥7🦄2💯1
⚡️Сбер представил новую систему синтеза речи для ГигаЧата — в одной модели используются сразу несколько разных уникальных голосов под разные задачи

Обновление позволяет генерировать речь в различных манерах — от естественного Freespeech для общения до подкастного формата, интонаций операторов и традиционного дикторского стиля. Звучание стало более органичным и приближенным к человеческому.

Что умеет новый синтез:

- для разных кейсов применения синтеза сделаны отдельные голоса
воспроизводит паузы, смысловые акценты и эмоциональную окраску
- построен на собственной разработке: GigaChat 3b как основа, специализированный токенизатор и адаптер к LLM
- умеет озвучивать тексты бесконечной длины с учетом контекста, а также клонировать голоса
- внутренние замеры демонстрируют прогресс в качестве и натуральности звука

Зачем это нужно:

- помогает создавать более органичные голосовые интерфейсы
- оптимален для разговорных ассистентов, озвучки подкастов или аудиокниг, а также в автоматизированных колл-центрах

Основные преимущества:

- есть возможность выбора голоса, которые подходят под разные задачи
- управление стилистикой и эмоциями на естественном языке
- самый живой синтез речи, ни у Алисы, ни у OpenAI ничего похожего нет

Новый синтез уже доступен в Voice Mode Гигачата.

@ai_machinelearning_big_data

#ai #ml #speech #llm
48👍22😁15🔥9🦄5🥱4❤‍🔥1🗿1
🌟 ZAYA1: первая MoE-модель, полностью обученная на стеке AMD.

Есть устойчивое мнение, что серьезное обучение нейросетей возможно только на чипах одной известной компании.

В Zyphra решили доказать обратное, и, в сотрудничестве с AMD и IBM провели эксперимент, который на практике доказал, что есть альтернатива.

Стартап опубликовал техотчет и результат - модель ZAYA1. Это первая модель архитектуры MoE, обученная полностью на платформе AMD.

Сеттинг проекта был действительно "красным": графические процессоры AMD Instinct, сетевые интерфейсы AMD Pensando и программный стек ROCm.

ZAYA1 получилась довольно интересной. У неё 8.3 млрд. общих параметров, из которых активных всего 800 миллионов.

Несмотря на компактность, в тестах она выглядит бодро. В ризонинге, математике и программирование ZAYA1 обошла Llama-3-8B и OLMoE. А по общим показателям встала в один ряд с Qwen3-4B и гугловской Gemma3-12B.

Обучение проходило на кластере IBM Cloud, где модель переварила 14 трлн. токенов. Но дело не только в железе, в папйплайне использовали архитектурные инновации:

🟢Новый механизм внимания - Compressed Convolutional Attention. Он использует свертки внутри блока внимания, это снизило нагрузку на вычисления и память.

🟢Переделали маршрутизатор MoE. Вместо стандартного линейного роутера, ZAYA1 использует сложную последовательность операций, что заставляет "экспертов" внутри нейросети специализироваться гораздо лучше.

🟢Residual Scaling. Добавили обучаемые скалярные гейты в остаточный стрим на выходы каждого блока, чтобы модель контролировала степень забывания.


⚠️ Для запуска инференса потребуется ветка zaya форка transformers из репозитория Zyphra.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Модель
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #LLM #MoE #Zyphra
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4923🔥13😁7🦄3🙏1
⚡️ Qwen3-VL: выпустили технический отчёт по новой линейке VLM

Опубликован tech report по Qwen3-VL - мультимодальным моделям, работающим с изображениями и текстом.

Кратко :
- Три модели собрали 1M+ загрузок за месяц.
- Qwen3-VL-8B - более 2M скачиваний.
- Линейка развивает идеи Qwen2.5-VL (2800+ цитирований).

Что описано в отчёте:
- Архитектура vision–language модели.
- Процесс обучения: pretraining + post-training.
- Источники данных и методы фильтрации.
- Сравнения с другими VLM и ключевые метрики.

🔗 PDF: https://arxiv.org/pdf/2511.21631
🔗
Видео: https://www.youtube.com/watch?v=clwFmuJX_wQ

@ai_machinelearning_big_data

#Qwen #Qwen3 #QwenVL #Qwen3VL #LLM #AIModel
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
141🔥18👍10❤‍🔥3🦄3👌2
🚀 DeepSeek выпустили DeepSeek Math V2 - мощную модель для самопроверяемых математических рассуждений.

Модель способна не просто решать задачи, а самостоятельно проверять корректность своих доказательств.

Это шаг от генерации ответа к глубокому, надёжному и логически выверенному выводу.

📊 Результаты:
- уровень золотой медали на IMO 2025
- почти идеальные результаты на CMO 2024
- 118 из 120 баллов на Putnam 2024

🔍 Главное отличие от предыдущих моделей:
ИИ учится *мыслить строго*, пошагово формируя доказательство и сам проверяет логическую связность каждого шага.

Подходит как для автоматизированного решения задач, так и для обучения, генерации разборов и проверки решений.

https://huggingface.co/deepseek-ai/DeepSeek-Math-V2

@ai_machinelearning_big_data

#AI #DeepSeek #Math #LLM #MachineLearning #OpenSource #
72👍23🔥13🦄4🤔32❤‍🔥2
🌟 ToolOrchestra: буст ИИ-потенциала за счет координации моделей и инструментов.

NVIDIA совместно с Университетом Гонконга разработала ToolOrchestra - методику обучения дирижеров для ИИ-агентов, и выпустила на ее основе модель Orchestrator-8B.

Это модель, базирующаяся на архитектуре Qwen3 предназначена для оркестрации других моделей и инструментов. Вместо того чтобы решать задачу в одиночку, модель чередует этапы рассуждения с вызовом внешних инструментов.

В ее арсенале поисковые движки, интерпретаторы кода и другие LLM, от узкоспециализированных математических до универсальных гигантов Claude и Llama-Nemotron.

Обучение проводилось с помощью GRPO, который поощрял модель не только за точность, но и за экономическую эффективность.

В результате решение получилось в 2,5 раза быстрее и на 70% дешевле в эксплуатации, чем использование одной лишь флагманской модели для всех этапов задачи, а сама Orchestrator-8B набрала 37,1% в сложнейшем бенчмарке Humanity's Last Exam , обойдя GPT-5 (35,1%).


📌Лицензирование кода : Apache 2.0 License.

📌Лицензирование модели: NVIDIA License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #Orchestrator #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
67👍34🔥11🦄3🤬2❤‍🔥1