376K subscribers
4.5K photos
882 videos
17 files
4.94K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Автомобили Honda получат китайский искусственный интеллект

Компания Honda объявила о партнёрстве с китайским стартапом SenseTime, который разработает для автомобилей японской марки искусственный интеллект, сообщает Tech Crunch.

Соглашение между фирмами рассчитано на пять лет и включает в себя разработку методик распознавания объектов вокруг беспилотных машин, а также создание алгоритмов по поведению автопилота в различных дорожных ситуациях.

Напомним, ранее сообщалось, что Honda в 2025 году намерена представить свой беспилотный автомобиль уровня Level 4 (автопилот роботизирован настолько, что все делает сам, но в автомобиле сохраняются основные органы управления автомобиля человеком). В 2020 году на рынок должна выйти Honda с технологиями автономного вождения уровня Level 3 (система контролирует езду по автомагистралям, но на дорогах с непредсказуемым движением водителю придется взять управление на себя).

Источник: www.kommersant.ru #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
@computer_science_and_programming :

Welcome to the world of:
* #Artificial #Intelligence,
* #Deep #Learning,
* #Machine #Learning,
* #Data #Science
* #Python Programming language
* and more advanced research
You will find up-to-date books📚 links🔗 and more you wanted.
Join us and learn hot topics of Computer Science together.👇👇👇

@computer_science_and_programming
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
🔲 TensorStore

Novel open-source C++ / #Python library for storage/manipulation of high-dim data

⚙️ Github
🗒 Tutorial
📌 Google AI
🦾 Docs

@ai_machinelearning_big_data
👍2653🔥2
⚡️ Релиз Python 3.13 и Git 2.47 ⚡️

Python 3.13, спустя ровно год с начала разработки, выпущен в релиз. Поддержка версии 3.13 планируется в течение 1.5 лет, и, после окончания этого срока еще 3.5 года версия будет получать критические обновления, связанные с безопасностью.

Ключевые изменения:

🟢экспериментальный компилятор JIT. Запуск в CPython –enable-experimental-jit;

🟢экспериментальный режим сборки CPython без GIL. Запуск –without-gil;

🟢интерактивный интерпретатор с многострочным редактированием, по подобию PyPy;

🟢изменена семантика locals() для функций, генераторов и сопрограмм;

🟢включена в состав модифицированная версия mimalloc от Microsoft;

🟢компилятор теперь очищает лидирующие пробелы из docstring;

🟢в модуле dbm реализован бэкенд dbm.sqlite3 по умолчанию для новых файлов;

🟢typing.TypeIs стала более интуитивной, чем typing.TypeGuard;

🟢typing.ReadOnly позволяет помечать элементы TypeDicts, доступные только для чтения;

🟢warnings.deprecated() добавлена для указания устаревших элементов в системе типов;

🟢удалены ifc, audioop, chunk, cgi, cgitb, crypt, imghdr, mailcap, msilib, nis, nntplib, ossaudiodev, pipes, sndhdr, spwd, sunau, telnetlib, uu, xdrlib и lib2to3 из стандартной библиотеки;

🟢в copy добавлена copy.replace();

🟢в os добавлены функции для работы с таймером через timerfd;

🟢random получил интерфейс CLI;

🟢macOS версий 10.9 - 10.12 больше не поддерживаются.

▶️Страница релиза 3.13 ▶️Документация 3.13


Git выпустил Git 2.47 с функциями и исправлениями ошибок от более чем 83 разработчиков, 28 из которых - новые.

В этой версии основное внимание уделяется повышению производительности и улучшению пользовательского опыта.

Основные изменения:

🟠инкрементные многопакетные индексы: экспериментальная функция, позволяющая сохранять несколько многопакетных индексов в цепочке слоев MIDX;

🟠ускорена идентификация базовой ветви : новый инструмент for-each-ref помогает определять базовую ветвь коммита, сводя к минимуму уникальные коммиты от первого родителя и упрощая идентификацию;

🟠обновлена политика поддержки: в Git 2.47 представлен новый документ, описывающий требования к поддержке для различных платформ, включая стандарты C99 или C11 и стабильные версии зависимостей;

🟠DEVELOPER=1 mode: теперь при компиляции с DEVELOPER=1 наличие неиспользуемых параметров является ошибкой времени компиляции;

🟠остальные улучшения : усовершенствования серверной части reftable, обновление платформы модульного тестирования, усовершенствование git fsck и интеграция кода Visual Studio с git mergetool.

▶️Полный список изменений


@ai_machinelearning_big_data

#AI #ML #Python #Git #Release
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍43🔥119
🌟 Numpy QuadDType: Четырехкратная точность в Python.

NumPy-QuadDType (numpy_quaddtype) — это реализация пользовательского типа данных (dtype) для NumPy, которая обеспечивает настоящую арифметику с плавающей точкой четверной точности на разных платформах.

Проект направлен на решение давних проблем с np.longdouble, предлагая согласованный, высокоточный тип с плавающей точкой независимо от базовой архитектуры системы, а также обеспечивая обратную совместимость long double.

Ядро numpy_quaddtype построено вокруг на двух ключевых компонентов:

🟢скалярный тип QuadPrecision, представляющий отдельные скаляры четверной точности;

🟢тип данных NumPy QuadPrecDType, позволяющий использовать эти скаляры четверной точности в массивах и операциях NumPy.

Отличительная черта numpy_quaddtype - его подход с двойным бэкэндом:

🟠SLEEF (библиотека SIMD для оценки элементарных функций): этот бэкэнд использует тип Sleef_quad из библиотеки SLEEF, предоставляя настоящую 128-битную учетверенную точность.

🟠Long Double: этот бэкэнд использует собственный тип long double, который может обеспечивать точность до 80 бит в некоторых системах, обеспечивая совместимость с np.longdouble.

Гибкость архитектуры numpy_quaddtype наследуется от компонентов ее ядра: QuadPrecisionObject, хамелеоноподобная структура, которая может переключаться между формами:

typedef union {  
Sleef_quad sleef_value;
long double longdouble_value;
} quad_value;

typedef struct {
PyObject_HEAD
quad_value value;
QuadBackendType backend;
} QuadPrecisionObject;


QuadPrecDTypeObject, который действует как мост, позволяя высокоточным числам гармонично работать в массивах и операциях NumPy:

typedef struct {  
PyArray_Descr base;
QuadBackendType backend;
} QuadPrecDTypeObject;


Он позволяет переключаться между бекэндами Sleef_quad (для SLEEF) и long double во время выполнения:

>>> import numpy as np  
>>> import numpy_quaddtype as npq

# Using SLEEF backend (default)
>>> x = npq.QuadPrecision(3.5)
>>> x = npq.QuadPrecision(3.5, backend='sleef')
>>> repr(x)
QuadPrecision('3.5e+000', backend='sleef')

# Using longdouble backend
>>> y = npq.QuadPrecision(2.5, backend='longdouble')
>>> repr(y)
QuadPrecision('2.5e+000', backend='longdouble')

# Creating a NumPy array with QuadPrecision dtype
>>> z = np.array([x, x], dtype=npq.QuadPrecDType()) # SLEEF
>>> print(z)
[QuadPrecision('3.5e+000', backend='sleef')
QuadPrecision('3.5e+000', backend='sleef')]

>>> z = np.array([y, y], dtype=npq.QuadPrecDType("longdouble")) # longdouble
>>> print(z)
[QuadPrecision('2.5e+000', backend='longdouble')
QuadPrecision('2.5e+000', backend='longdouble')]


В тестах numpy_quaddtype с бэкендом SLEEF показал точность в 34 десятичных знаков. ULP (единица в младшем разряде) для основных арифметических операций ≤ 0,5000000001, а для трансцендентных функций ≤ 1,0.

C бэкендом Long Double показал точность, зависящую от платформы: 18-19 десятичных знаков в Linux и 15-17 в Windows.

В настоящее время ведётся подготовка к выпуску numpy_quaddtype в виде пакета Python, доступного через PyPI и conda. Также планируется направить предложение NEP для интеграции numpy_quaddtype в экосистему NumPy и рассмотреть TLFloat как потенциальную замену SLEEF в будущих версиях.

▶️Читать полную статью с демо возможностей numpy_quaddtype на примере визуализации множества Мандельброта при экстремальном увеличении и моделирование квантового гармонического осциллятора для двухатомных молекул.


@ai_machinelearning_big_data

#AI #ML #DS #Python #NumPy
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥19👍136🌚3
🌟 Языки программирования в 50 строк кода Python.

Репозиторий на Github c микрореализацией фундаментальных языков программирования, по мотивам серии статей "Tiny Great Languages"

Все написано на Python, код намеренно краток, чтобы не превышать ~50 строк кода для каждого языка.

Используется только стандартная библиотека Python, да и то в очень скромных пределах (sys, иногда re, редко itertool и т.д.).

▶️ Реализованы языки:

asm.py - ассемблер. Компилирует "Python-ассемблер" в байткод и выполняет его;

basic.py - бейсик. Подмножество TinyBASIC, но с настоящим редактором строк BASIC!

lisp.py - Lisp 1.5. Классика, автор - Джон Маккарти, достаточен, чтобы интерпретировать самого себя (мета-циклический интерпретатор);

apl.py - интерпретатор k/simple, написанный Артуром Уитни, представляет собой диалект языка программирования K (array processing language), который является вариантом APL.

mouse.py - язык конкатенативного программирования MOUSE, опубликованный в журнале BYTE в 1979 году.

pl0.py - переводчик с языка PL/0, автор Никлаус Вирт.

tcl.py - крошечный интерпретатор командного языка (TCL).


📌Лицензирование: MIT License.


🖥Github

#Python #TinyLanguage
Please open Telegram to view this post
VIEW IN TELEGRAM
24👍10🔥9🌚1🗿1
🤖 Quantum Swarm

Quantum Swarm (QUARM) - это мощная мультиагентная система, которая обрабатывает запросы с помощью скоординированного роя специализированных ИИ-агентов.

Каждый агент играет уникальную роль в анализе и ответе на запросы пользователей, предоставляя свой вариант ответа на поставленную задачу.

Особенности

Сложные запросы обрабатываются несколькими специализированными агентами:

- Система Query Triage: Определяет сложность каждого запроса
- Интерпретатор запросов: Разбирает и анализирует запросы
- Специалист по исследованиям: Определяет ключевые области для исследования
- Критический анализатор: Оценивает информацию и выявляет пробелы
- Творческий исследователь: Генерирует новые варианты решения задачи
Синтезатор информации: - Объединяет идеи в последовательные ответы

🚀 Поддерживает различные интерфейсы:

- Поддержка CLI
- Простая Интеграция с Telegram-ботми
- RESTful API с поддержкой потоковой передачи данных
- Поддержка веб-интерфейса

🚨 Расширенные возможности:

- Потоковая передача ответов в реальном времени
- Память диалогов с автоматической очисткой
- Настраиваемые параметры агента
- Поддержка нескольких LLM-провайдеров (OpenAI, Groq, Heurist)
- Поддержка CORS для веб-интеграции

Установка:

git clone https://github.com/QuarmFW/Quarm.git
cd quarm


Github

@ai_machinelearning_big_data


#python #ai #ml #aiagents #agents #aiswarm
Please open Telegram to view this post
VIEW IN TELEGRAM
133👍19🔥10😁3👀2👏1👾1
💡 Distilabel

Мощный фреймворк Python для создания синтетических данных для AI и не только для этого

Помимо создания синтетических данных, Distilabel помогает организовать сложные конвейеры обработки данных;
эти конвейеры могут содержать любое количество разных шагов.

Позволяет легко синтезировать и оценивать данные с помощью встроенных инструментов. Отлчиный инструмент для улучшении данных и обучении моделей.

Процесс прост:

- Вводим запрос.
- Два LLM генерируют ответы
- LLM-судья оценивает полученные ответы
- Лучший ответ сопоставляется с изначальным вопросов.

И что самое интересное? Все это с открытым исходным кодом. Лицензия позволяет использовать результаты модели для улучшения других моделей.

GitHub
Доки

@ai_machinelearning_big_data


#Distilabel #python #ai #openai #python #ai #syntheticdata #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
136👍21🔥8🥰2