329K subscribers
4.18K photos
772 videos
17 files
4.7K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
⚡️ QVQ-72B-Preview: VLM с ризонингом от Qwen.

QVQ-72B-Preview - экспериментальная VLM на основе Qwen2-VL-72B , разработанная Qwen, со способностями к аналитическому мышлению и новым уровнем когнитивных навыков.

Проведенная в Qwen оценка QVQ-72B-Preview на бенчмарках MMMU, MathVista, MathVision и OlympiadBench показала результат 70.3 на MMMU, 71.4 на MathVista, 35.9 в MathVision и 20.4 на наборе OlympiadBench, подчеркнув ее способность к комплексному пониманию и рассуждению в мультидисциплинарных задачах.

⚠️ Несмотря на высокие результаты, QVQ-72B-Preview - предварительная версия модели, которая имеет ограничения:

🟠возможность смешения языков и переключения между ними;
🟠склонность к зацикливанию в логических рассуждениях;
🟠постепенная потеря концентрации на визуальном контенте при многоступенчатом рассуждении, что может приводить к галлюцинациям.

Неофициальные квантованные версии QVQ-72B-Preview в формате GGUF с диапазоном разрядностей от 1-bit (23.7GB) до 8-bit (77.26GB) и MLX-версии от mlx community в разрядностях от 4-bit до 16-bit.

📌Лицензирование: Qwen License.


🟡Статья
🟡Модель
🟡Demo
🟡Набор GGUF
🟡Набор MLX
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #Qwen #Reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥20👍126
🥥 Training Large Language Models to Reason in a Continuous Latent Space

Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).

Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.

Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем

При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.

В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами <bot> и <eot>.

Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.

На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.

Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.

Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.

Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов

git clone git@github.com:facebookresearch/coconut.git
cd coconut


Github
Paper

@ai_machinelearning_big_data


#deeplearning #nlp #reasoning #llm #ml
🔥49👍2114👾2
🚨Только что были выпущены веса для новой ризонинг модели DeepSeek-R1.

Модель 685B разработана чтобы конкурировать с o1 от OpenAI и построена на архитектуре на DeepSeek V3.

Вы можете потестить ее на 8 * H200.

Размер примерно ~720GB.

UPDATE
: эти гигачады выпустили сразу 6 моделей от 1.5B до 70B 🔥

DeepSeek-R1-Distill-Qwen-1.5B превосходит GPT-4o и Claude-3.5-Sonnet в математике, набрав 28,9% у AIMEE и 83,9%, стоимость примерно в 30 раз дешевле, чем o1 и примерно в 5 раз дешевле o1 mini.

🤗HF: https://huggingface.co/deepseek-ai/DeepSeek-R1/tree/main
📌Потестить: https://chat.deepseek.com/sign_in
🖥 GitHub: https://github.com/deepseek-ai/DeepSeek-R1

@ai_machinelearning_big_data



#DeepSeek #deepseekv3 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥45👍2810😁8👏2👾1
🧠 DeepSeek обнаружили, что у их новой модели был момент озарения, когда она сама для себя разработала продвинутую технику рассуждения.

Оказывается, вам просто нужно правильно стимулировать модель.

Читой воды обучение с подкреплением (RL) может научить модель думать и рефлексировать.

Мы возвращаемся в эпоху AlphaGo: играя в бесчисленные партии Go и максимально увеличивая функцию вознаграждения (выигрыш в игре), используя чистый RL, AlphaGo научился побеждать лучших игроков мира.

Похоже это будет эра LLM RL.

📕 Paper

@ai_machinelearning_big_data

#DeepSeek #deepseekr1 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥114👍2816🤔7🤣6😨3
👑 Вчера была выпущена еще одна интересная китайская опенсорс модель ризонинга.

Kimi представила Kimi k1.5 - мультимодальную модель, использующую обучение с подкреплением с длинной и короткой цепочкой размышления (CoT).

- Контекст 128 тыс. токенов

- Согласно их опубликованному отчету, они достигли производительности SOTA в таких тестах, как AIME (77,5), MATH-500 (96,2) и LiveCodeBench (47,3).

→ Производительность Long-CoT соответствует o1 в нескольких тестах: Math Vista, Codeforces и т.д)

- Модель превосходит GPT-4o и Claude Sonnet 3.5 на AIME

⚡️ Технический отчет: https://github.com/MoonshotAI/Kimi-k1.5

#llm #reasoning #ml #Kimi #preview
🔥46👍2192🤔1😐1💘1