QVQ-72B-Preview - экспериментальная VLM на основе Qwen2-VL-72B , разработанная Qwen, со способностями к аналитическому мышлению и новым уровнем когнитивных навыков.
Проведенная в Qwen оценка QVQ-72B-Preview на бенчмарках MMMU, MathVista, MathVision и OlympiadBench показала результат 70.3 на MMMU, 71.4 на MathVista, 35.9 в MathVision и 20.4 на наборе OlympiadBench, подчеркнув ее способность к комплексному пониманию и рассуждению в мультидисциплинарных задачах.
⚠️ Несмотря на высокие результаты, QVQ-72B-Preview - предварительная версия модели, которая имеет ограничения:
Неофициальные квантованные версии QVQ-72B-Preview в формате GGUF с диапазоном разрядностей от 1-bit (23.7GB) до 8-bit (77.26GB) и MLX-версии от mlx community в разрядностях от 4-bit до 16-bit.
@ai_machinelearning_big_data
#AI #ML #VLM #Qwen #Reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥20👍12❤6
🥥 Training Large Language Models to Reason in a Continuous Latent Space
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
<bot> и <eot>.
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
git clone git@github.com:facebookresearch/coconut.git
cd coconut
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
🔥49👍21❤14👾2
🚨Только что были выпущены веса для новой ризонинг модели DeepSeek-R1.
Модель 685B разработана чтобы конкурировать с o1 от OpenAI и построена на архитектуре на DeepSeek V3.
Вы можете потестить ее на 8 * H200.
Размер примерно ~720GB.
UPDATE: эти гигачады выпустили сразу 6 моделей от 1.5B до 70B 🔥
DeepSeek-R1-Distill-Qwen-1.5B превосходит GPT-4o и Claude-3.5-Sonnet в математике, набрав 28,9% у AIMEE и 83,9%, стоимость примерно в 30 раз дешевле, чем o1 и примерно в 5 раз дешевле o1 mini.
🤗HF: https://huggingface.co/deepseek-ai/DeepSeek-R1/tree/main
📌Потестить: https://chat.deepseek.com/sign_in
🖥 GitHub: https://github.com/deepseek-ai/DeepSeek-R1
@ai_machinelearning_big_data
#DeepSeek #deepseekv3 #reasoning #ml
Модель 685B разработана чтобы конкурировать с o1 от OpenAI и построена на архитектуре на DeepSeek V3.
Вы можете потестить ее на 8 * H200.
Размер примерно ~720GB.
UPDATE: эти гигачады выпустили сразу 6 моделей от 1.5B до 70B 🔥
DeepSeek-R1-Distill-Qwen-1.5B превосходит GPT-4o и Claude-3.5-Sonnet в математике, набрав 28,9% у AIMEE и 83,9%, стоимость примерно в 30 раз дешевле, чем o1 и примерно в 5 раз дешевле o1 mini.
🤗HF: https://huggingface.co/deepseek-ai/DeepSeek-R1/tree/main
📌Потестить: https://chat.deepseek.com/sign_in
@ai_machinelearning_big_data
#DeepSeek #deepseekv3 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥45👍28❤10😁8👏2👾1
Оказывается, вам просто нужно правильно стимулировать модель.
Читой воды обучение с подкреплением (RL) может научить модель думать и рефлексировать.
Мы возвращаемся в эпоху AlphaGo: играя в бесчисленные партии Go и максимально увеличивая функцию вознаграждения (выигрыш в игре), используя чистый RL, AlphaGo научился побеждать лучших игроков мира.
Похоже это будет эра LLM RL.
📕 Paper
@ai_machinelearning_big_data
#DeepSeek #deepseekr1 #reasoning #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥114👍28❤16🤔7🤣6😨3
👑 Вчера была выпущена еще одна интересная китайская опенсорс модель ризонинга.
Kimi представила Kimi k1.5 - мультимодальную модель, использующую обучение с подкреплением с длинной и короткой цепочкой размышления (CoT).
- Контекст 128 тыс. токенов
- Согласно их опубликованному отчету, они достигли производительности SOTA в таких тестах, как AIME (77,5), MATH-500 (96,2) и LiveCodeBench (47,3).
→ Производительность Long-CoT соответствует o1 в нескольких тестах: Math Vista, Codeforces и т.д)
- Модель превосходит GPT-4o и Claude Sonnet 3.5 на AIME
⚡️ Технический отчет: https://github.com/MoonshotAI/Kimi-k1.5
#llm #reasoning #ml #Kimi #preview
Kimi представила Kimi k1.5 - мультимодальную модель, использующую обучение с подкреплением с длинной и короткой цепочкой размышления (CoT).
- Контекст 128 тыс. токенов
- Согласно их опубликованному отчету, они достигли производительности SOTA в таких тестах, как AIME (77,5), MATH-500 (96,2) и LiveCodeBench (47,3).
→ Производительность Long-CoT соответствует o1 в нескольких тестах: Math Vista, Codeforces и т.д)
- Модель превосходит GPT-4o и Claude Sonnet 3.5 на AIME
⚡️ Технический отчет: https://github.com/MoonshotAI/Kimi-k1.5
#llm #reasoning #ml #Kimi #preview
🔥46👍21❤9⚡2🤔1😐1💘1