Media is too big
VIEW IN TELEGRAM
OpenAI представила GPT-5.2-Codex, которую называет самым продвинутым инструментом для реальной программной инженерии на сегодняшний день. Модель получила нативную поддержку сжатия контекста, улучшенную интеграцию с терминалом Windows и способность проводить глубокий рефакторинг крупных репозиториев без потери логической нити.
Ключевой апдейт коснулся сферы безопасности - Codex резко прибавил способностей в анализе защищенности кода. Модель уже доступна платным пользователям ChatGPT, а API будет открыт в ближайшие недели.
openai.com
Компания Илона Маска открыла публичный доступ к Grok Voice Agent API — нативному интерфейсу speech-to-speech для создания голосовых ассистентов. Решение построено на полностью собственной архитектуре, что позволило достичь задержки ответа менее 1 секунды.
API поддерживает вызов внешних инструментов, веб-поиск, прямую интеграцию с телефонией через SIP и понимает более 100 языков. В бенчмарке Big Bench Audio модель заняла 1 место с точностью 92,3%, опередив Gemini 2.5 Flash и GPT Realtime.
Главной фишкой стала ценовая политика: единый тариф составляет $0.05 за минуту. Это значительно дешевле, чем у OpenAI и ElevenLabs.
x.ai
В VS Code Insiders появилась поддержка Agent Skills - открытого протокола, разработанного Anthropic. Технология позволяет упаковывать инструкции, скрипты и вспомогательные ресурсы в модули, которыми можно пользоваться в разных ИИ-инструментах.
Главное отличие Agent Skills от привычных кастомных инструкций в функциональности: это не текстовые гайдлайны по стилю кода, а полноценные наборы инструментов для автоматизации задач, которые подгружаются в контекст модели динамически и только при необходимости.
Стандарт дает кросс-платформенность: созданный один раз скилл будет работать одинаково как в интерфейсе редактора, так и в CLI-агентах.
code.visualstudio.com
T5Gemma 2 получила серьезные архитектурные изменения по сравнению с первой версией. Чтобы снизить потребление памяти, инженеры внедрили
tied word embeddings для энкодера и декодера, а также объединили механизмы self-attention и cross-attention в единый слой. Модели доступны в компактных конфигурациях на 270M, 1B и 4B параметров.Новинка поддерживает контекстное окно до 128 тыс. токенов и умеет обрабатывать не только текст на 140 языках, но и изображения. В бенчмарках T5Gemma 2 обошла базовую Gemma 3 в задачах на длинный контекст, кодинг и мультимодальное понимание. Модели доступны на Hugging Face и Kaggle для исследовательских целей.
blog.google
Perception Encoder Audiovisual (PE-AV) - техническое ядро, лежащее в основе SAM Audio. Это мультимодальная модель, которая объединяет аудио, видео и текст в единое пространство эмбеддингов.
PE-AV умеет извлекать векторы признаков из аудио или видеокадров и формировать совместные аудиовизуальные представления. Это повышает точность в задачах кросс-модального поиска, детекции звуков и глубокого понимания сцен, где важен синхронный контекст изображения и звука.
В открытом доступе - 6 чекпоинтов модели разного размера (от Small до Large) с вариациями по количеству обрабатываемых кадров. Код опубликован на GitHub, а веса - на Hugging Face.
huggingface.co
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍56❤26🔥12🦄1
В диффузионных архитектурах считается, что масштабировать первую стадию, VAE - занятие неблагодарное.
Eго задача - превратить пиксели в латентный код и обратно, а добавление ему параметров или данных никак не помогает основной модели DiT генерировать изображения лучше.
MiniMax решила поменять правила игры и представила Visual Tokenizer Pre-training (VTP).
Их гипотеза заключается в том, что токенизатор должен не просто механически "зиповать" пиксели, а понимать семантику изображения.
Чтобы реализовать это, они объединили в обучении токенизатора сразу 3 лосса:
Это заставило латентное пространство структурироваться семантически: теперь векторы кодировали смыслы, а не просто цветовые пятна.
Оказалось, что качество генерации напрямую зависит от "интеллекта" токенизатора. Не меняя архитектуру и гиперпараметры самого DiT и не увеличивая затраты на его обучение, просто за счет использования VTP-токенизатора удалось улучшить метрику FID на 65.8% и ускорить сходимость модели в 3 раза.
Теперь, чем больше вычислительной мощности и данных вливается в претрейн токенизатора, тем качественнее становится итоговая генерация, чего раньше с обычными VAE достичь было невозможно.
🖥GitHub
@ai_machinelearning_big_data
#AI #ML #Diffusion #Tokenizer #Minimax
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤28👍14🔥10🦄1