Media is too big
VIEW IN TELEGRAM
ARC Prize зафиксировали рекорд GPT-5.2 Pro (X-High). Модель достигла точности 90,5% при стоимости вычислений $11,64 за задачу. Тесты ARC-AGI - это уникальные задачи, требующие навыков обобщения и логики, что исключает возможность запоминания паттернов из обучающей выборки.
Несмотря на успех, экономика процесса пока отстает от идеала. Стоимость решения одной задачи все еще в 58 раз превышает целевой показатель бенчмарка ($0,20), а до человеческого уровня (100% точности) сохраняется разрыв. На более сложном наборе ARC-AGI-2 модель показала результат 54,2%.
ARC Prize в сети Х
Спецификация Really Simple Licensing (RSL), позволяющая издателям диктовать условия лицензирования для ИИ-краулеров, получила статус официального стандарта. Технически, это расширение файла
robots.txt, которое дает возможность указывать правила компенсации за парсинг контента.RSL получил поддержку со стороны гигантов: стандарт внедрили Cloudflare, Akamai и Fastly. Это превращает RSL из простой декларации в рабочий механизм — провайдеры смогут блокировать на уровне CDN тех ботов, которые игнорируют условия лицензии.
Еще одна важная особенность версии 1.0 — гранулярный контроль видимости. Теперь ресурсы могут запретить использование своих материалов в генеративных ответах, сохраняя при этом позиции в классической поисковой выдаче.
rslstandard.org
Компании объявили о соглашении, которое меняет правила игры в сфере авторского права в ИИ. Начиная со следующего года, Sora сможет официально использовать образы Микки Мауса, Йоды и других героев студии. В рамках сделки Disney получает долю в OpenAI размером в $1 млрд, а ее инженеры - приоритетный доступ к API ChatGPT для внутренних разработок.
Для Disney, известной своей жесткой позицией по защите авторских прав это стратегический разворот. Вместо безуспешных попыток полностью запретить генерацию своих персонажей, корпорация решила возглавить процесс и монетизировать его.
Стороны обещают внедрить жесткие фильтры безопасности, а на Disney+ появится раздел с фанатскими видео, созданными в Sora.
openai.com
DeepMind представила апдейт для моделей синтеза речи Gemini Flash TTS и Pro TTS, заменяющий майские версии этого года. Разделение по задачам осталось прежним: Flash для real-time приложений, а Pro - для максимального качества.
Теперь модели жестче придерживаются системных промптов, задающих тон, настроение и ролевую модель спикера. Добавили контекстно-зависимое управление темпом: алгоритм автоматически замедляет речь на плотной информации и ускоряется там, где это уместно, либо строго следует явно заданным таймингам.
Также инженеры стабилизировали работу мульти-спикерных диалогов: голоса собеседников больше не «плывут» и остаются четко различимыми.
blog.google
Компания опубликовала исследование об эволюции взаимодействия с ИИ-ассистентом за последний год. Данные показывают смену аудитории: если в январе среди запросов доминировало программирование, то к концу года вектор сместился в сторону социальных тем. Это подтверждает выход технологии в мейнстрим - пользователи всё чаще видят в ИИ не просто умный поиск, а полноценного советчика.
Отчет также подсвечивает зависимость запросов от контекста. Мобильные устройства закрепили за собой роль карманных консультантов по здоровью и психологии. Время суток тоже влияет на содержание: глубокой ночью растет доля философских и экзистенциальных бесед.
Для разработчиков эти метрики важны: следующее поколение ассистентов должно уметь адаптироваться не только под текст запроса, но и под устройство и время обращения.
microsoft.ai
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍60❤21🔥7🦄2
PyRoki (Python Robot Kinematics) - это модульный, расширяемый и кроссплатформенный инструментарий, заточенный под задачи кинематической оптимизации и реализованный полностью на Python.
Фишка библиотеки - в предоставлении дифференцируемой модели прямой кинематики робота, которая строится на основе URDF-файлов, тем самым избавляя инженера от необходимости вручную прописывать кинематические цепи: система не только парсит описание робота, но и автоматически генерирует примитивы коллизий.
С точки зрения математического аппарата, PyRoki интегрируется с решателем Levenberg-Marquardt (через jaxls). Это дает возможность проводить оптимизацию на многообразиях, а также обрабатывать жесткие ограничения с помощью решателя на основе модифицированной функции Лагранжа.
Библиотека предлагает готовые реализации cost-функций: поза рабочего органа, коллизии с самим собой или объектами мира и метрики манипулируемости.
Если стандартного набора недостаточно, архитектура позволяет задавать свои функции затрат, используя как автоматическое дифференцирование, так и аналитические якобианы.
Благодаря базе JAX, библиотека кроссплатформенна: ее работа возможна на CPU, GPU и TPU.
Компиляция триггерится при первом запуске, а также каждый раз, когда меняются формы входных данных: например, количество целей или препятствий.
Чтобы избежать расходов на перекомпиляцию, рекомендуется использовать предварительный паддинг массивов, что позволяет векторизовать вычисления для входов с различными шейпами.
Также стоит учитывать, что в библиотеке отсутствуют планировщики, основанные на сэмплировании (графы, деревья), поэтому задачи глобального планирования пути придется решать внешними средствами.
На данный момент PyRoki работает исключительно с кинематическими деревьями; замкнутые механизмы или параллельные манипуляторы не поддерживаются.
Список доступных типов джоинтов ограничен 4 позициями: вращательные, непрерывные, призматические и фиксированные. Любые другие типы соединений, встреченные в URDF, будут автоматически интерпретироваться системой как фиксированные.
Для геометрии коллизий набор примитивов также фиксирован: поддерживаются сферы, капсулы, полупространства и карты высот.
Если ваша модель использует сложные меши, коллизии для них будут аппроксимироваться капсулами.
В вопросах производительности, особенно в сценариях с интенсивными проверками коллизий, PyRoki, вероятно, уступает CuRobo, хотя, как говорится в документации - сравнительные тесты скорости и точности авторами пока не проводились.
@ai_machinelearning_big_data
#AI #ML #Robotics #Pyroki #Python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🔥13❤8👌1🤗1🦄1
Ускорит ли ИИ технологический и научный прогресс?
В гостях подкаста «Деньги любят техно» побывал Арутюн Аветисян, директор Института системного программирования РАН, академик, доктор физико‑математических наук.
Интересно послушать и посмотреть всем, кто задумывается о том:
— как строится карьера учёного в современной реальности;
— какие качества выделяют перспективного исследователя;
— что превращает гипотезу в реальный прорыв;
— способен ли ИИ ускорить технологический прогресс;
— какие вызовы несёт дальнейшая цифровизация и роботизация;
— как строить продуктивное взаимодействие между наукой, бизнесом и open‑source‑сообществом.
Ведущий — Денис Суржко, заместитель руководителя департамента анализа данных и моделирования ВТБ.
Эпизод точно будет полезен дата‑сайентистам и исследователям, которые задумываются о карьерных перспективах и хотят развиваться в своих сферах.
#Podcast #AI #ML #DataScience
Посмотреть 👈
Послушать 👈
В гостях подкаста «Деньги любят техно» побывал Арутюн Аветисян, директор Института системного программирования РАН, академик, доктор физико‑математических наук.
Интересно послушать и посмотреть всем, кто задумывается о том:
— как строится карьера учёного в современной реальности;
— какие качества выделяют перспективного исследователя;
— что превращает гипотезу в реальный прорыв;
— способен ли ИИ ускорить технологический прогресс;
— какие вызовы несёт дальнейшая цифровизация и роботизация;
— как строить продуктивное взаимодействие между наукой, бизнесом и open‑source‑сообществом.
Ведущий — Денис Суржко, заместитель руководителя департамента анализа данных и моделирования ВТБ.
Эпизод точно будет полезен дата‑сайентистам и исследователям, которые задумываются о карьерных перспективах и хотят развиваться в своих сферах.
#Podcast #AI #ML #DataScience
Посмотреть 👈
Послушать 👈
🙈10❤9👍5🤗4🥰3🥱3🙏1🦄1🙊1
ОMC25 - крупнейший набор данных по молекулярным кристаллам, рассчитанный методом теории функционала плотности (DFT) в пакете VASP.
В основе датасета лежат структуры, полученные из траекторий релаксации молекулярных кристаллов. Сами исходные кристаллы были сгенерированы с помощью инструмента Genarris 3.0, который, в свою очередь, использовал молекулы из известного набора OE62. Это обеспечивает преемственность данных и четкую привязку к проверенным химическим структурам, но масштаб здесь совершенно иной.
Тренировочная часть содержит почти 25 млн. фреймов. Это данные по 207 тыс. кристаллов, которые, в свою очередь, произошли от 44 тыс. уникальных молекул.
Валидационная часть меньше, но тоже весовая: около 1,4 миллиона кадров. Данные упакованы в формате ase-db как объекты LMDBDatabase, что является стандартом в задачах машинного обучения для химии.
Исходные кристаллы были созданы программой Genarris 3.0. Она, в свою очередь, использовала молекулы из популярного набора OE62. Так что у данных есть четкая привязка к проверенным химическим структурам.
Работа с данными сета происходит через библиотеку
fairchem. Каждая структура хранится как объект ASE Atoms, что привычно для инженеров, работающих с атомистическим моделированием. Ключевые метки для обучения моделей включают полную энергию DFT, силы, действующие на атомы, и тензор напряжений . Это "каноническая троица" для обучения межатомных потенциалов. Помимо физических величин, в атрибуте
atoms.info зашиты критически важные метаданные.Помимо самого набора, авторы выложили базовый чекпоинт eSEN-S, обученный на всём OMC25.
@ai_machinelearning_big_data
#AI #ML #Dataset #FAIR #Chemistry
Please open Telegram to view this post
VIEW IN TELEGRAM
❤68👍16🔥8🦄1
Media is too big
VIEW IN TELEGRAM
Деловое издание отметило ключевую роль Хуанга в трансформации полупроводниковой индустрии и глобальном распространении ИИ. NVIDIA оказалась в центре беспрецедентной инвестиционной программы частного сектора, что позволило ей первой в мире преодолеть рубеж рыночной капитализации в $5 трлн. и стать самой дорогой компанией на планете.
FT утверждает, что 2025 год войдет в историю как время, когда дата-центры окончательно закрепились в статусе критически важной инфраструктуры. Наращивание вычислительных мощностей для ИИ превратилась в драйвер экономики, обеспечив значительную долю роста ВВП США.
ft.com
NVIDIA Research предлагает смену парадигмы Computer-Aided Engineering (CAE) на AI-Aided Engineering. Вместо прямых вычислений предлагается использовать ИИ-модели, обученные на физических законах и данных симуляций. Такие модели работают как быстрая замена классическим расчётам. Например, прогноз погоды можно сделать за минуты вместо дней.
Основной технический вектор исследований направлен на отказ от дискретизированных мешей. NVIDIA разрабатывает архитектуры, которые смогут работать напрямую с CAD-геометрией. Это сохранит физическую точность расчетов, значительно упростив подготовку данных.
В итоге AIAE-модели хотят интегрировать в платформу Omniverse для создания интерактивных цифровых двойников, где инженеры смогут мгновенно видеть результат при изменении параметров.
research.nvidia.com
Агент специализируется на длительных задачах по сбору и синтезу контекста, используя модель Gemini 3 Pro . Он самостоятельно формирует запросы, анализирует контент, выявляет пробелы в полученных данных и проводит повторный поиск до формирования качественного отчета.
Эффективность решения подтверждается рекордными 46.4% на бенчмарке HLE и 66.1% на собственном DeepSearchQA. В ближайших обновлениях обещают поддержку MCP, который позволит подключать агента к кастомным источникам данных, и нативную генерацию аналитических графиков.
blog.google
Семейство пополнилось моделями Olmo 3.1 Think и Instruct на 32 млрд. параметров. Версия Think получила расширенное RL, в результате чего модель прибавила 5 пунктов в AIME и 20 в IFBench, обойдя предыдущую версию и закрепив за собой статус лидера среди полностью открытых ризонинг-моделей. Вариант Instruct, в свою очередь, оптимизирован для диалогов, работы с инструментами и удержания длительного контекста.
Параллельно Ai2 обновила и младшие модели Olmo RL-Zero 7B, специализирующиеся на математике и коде, повысив стабильность их обучения. Институт продолжает придерживаться принципов открытости: сообществу доступны не только веса, но и полные датасеты, трейн-код и логи.
Ai2 в сети Х
Новинка понимает законы физики, геометрию и причинно-следственные связи, предсказывая изменения среды кадр за кадром. Архитектура модели пока разделена на 3 направления, которые в будущем планируется объединить.
GWM-Worlds создает интерактивные виртуальные миры по текстовому или визуальному запросу в 720p при 24 fps. GWM-Robotics генерирует синтетические данные для обучения роботов, позволяя моделировать редкие сценарии и препятствия, а GWM-Avatars фокусируется на реалистичной симуляции человеческого поведения. Компания уже готовит SDK для доступа к инструментам робототехники и ведет переговоры с промышленными партнерами.
runwayml.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤58👍16🔥10💯2🤗1🗿1🦄1