346K subscribers
4.23K photos
793 videos
17 files
4.74K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🧠 Карпаты показал, как добавить новую функцию в мини-LLM nanochat d32, сравнив её «мозг» с мозгом пчелы.

Он обучил модель считать, сколько раз буква r встречается в слове strawberry, и использовал этот пример, чтобы показать, как можно наделять маленькие языковые модели новыми навыками через синтетические задачи.

Сначала генерируются диалоги:

«Сколько букв r в слове strawberry?»

и правильные ответы.

После этого модель проходит дообучение (SFT) или обучение с подкреплением (RL), чтобы закрепить навык.

Карпаты объясняет, что для маленьких моделей важно продумывать всё до мелочей, как разнообразить запросы, как устроена токенизация и даже где ставить пробелы.

Он показывает, что рассуждения лучше разбивать на несколько шагов, тогда модель легче понимает задачу.

Nanochat решает задачу двумя способами:
— логически, рассуждая пошагово;
— через встроенный Python-интерпретатор, выполняя вычисления прямо внутри чата.

Идея в том, что даже крошечные LLM можно «научить думать», если правильно подготовить примеры и синтетические данные.

📘 Разбор: github.com/karpathy/nanochat/discussions/164

@ai_machinelearning_big_data

#AI #Karpathy #Nanochat #LLM #SFT #RL #MachineLearning #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
76👍44🔥17💘3🤗2
Media is too big
VIEW IN TELEGRAM
✔️ IBM совершила прорыв в квантовых вычислениях: на обычных FPGA-чипах

Всего через два дня после новости от Google - ещё один крупный квантовый прорыв.

IBM заявила, что один из её ключевых алгоритмов квантовой коррекции ошибок теперь способен работать в реальном времени на FPGA-чипах AMD, без использования экзотического оборудования.

Это делает квантовые вычисления быстрее, дешевле и ближе к практическому применению, чем ожидалось.

Алгоритм, который отслеживает и исправляет ошибки кубитов «на лету»,показал производительность в 10 раз выше необходимой, что стало важным шагом к созданию квантового компьютера Starling, запланированного на 2029 год.
Теперь IBM утверждает, что проект идёт на год впереди графика.

Исследовательская статья выйдет в понедельник.
Темп развития квантовых технологий заметно ускоряется.
reuters

✔️ Microsoft представила AI-браузер Edge - ответ на OpenAI Atlas

Через два дня после запуска OpenAI Atlas Microsoft представили обновлённый браузер Edge с новым режимом Copilot Mode. Это полноценный AI-бразуер, который понимает контекст вкладок, выполняет действия и способен продолжать проекты, используя историю пользователя.

Функция Actions позволяет голосом или через чат открывать страницы, находить нужную информацию, отписываться от рассылок и даже бронировать рестораны. Система Journeys группирует прошлую активность по темам и помогает вернуться к незавершённым задачам, предлагая логичные следующие шаги. Включение Page Context даёт Copilot доступ к истории для более точных и персонализированных ответов, однако это остаётся опциональной функцией, которую можно отключить в любой момент.

Edge также получил встроенный AI-защитник от фейковых всплывающих окон, менеджер паролей с проверкой на утечки.

Браузер уже доступен в странах, где работает Copilot, на Windows и macOS.
Microsoft

✔️ Google добавили reasoning в Google Earth

Google представила фреймворк Geospatial Reasoning на базе Gemini, который объединяет предиктивные модели и данные в единую систему анализа Земли.
Теперь ИИ способен рассуждать о реальных процессах, например, предсказывать землетрясения, оценивать риски и предлагать план эвакуации.

Система уже применяется в ВОЗ (WHO AFRO) для прогнозов вспышек холеры и у McGill & Partners для расчёта ущерба после ураганов.

Google превращает Google Earth из карты в разумный аналитический инструмент планеты.
google


✔️ Исследователи создали систему DiscoRL (Discovered Reinforcement Learning), где модель сама открыла правило обучения с подкреплением, не опираясь на человеческие алгоритмы вроде Q-Learning или PPO.

Мета-обучатель наблюдал за множеством агентов в разных средах и вывел универсальное правило обновления, которое улучшает поведение моделей без ручной настройки.
В итоге DiscoRL победил лучшие алгоритмы на Atari 57 и успешно перенёс этот навык на новые задачи.
nature

✔️ Hugging Face выпустила OpenEnv: универсальную среду для создания AI-агентов

Hugging Face открыла OpenEnv -платформуа где можно собирать, обучать и масштабировать агентов под ваши задачи.
Внутри уже есть всё: инструменты, плагины, API и поддержка обучения с подкреплением - без сторонних библиотек.

OpenEnv позволяет создавать системы, где агенты взаимодействуют, распределяют задачи и выполняют их самостоятельно.
Платформа полностью открыта и готова к использованию без ограничений.
HF

✔️ Qwen3-Max вышла в лидеры среди AI-трейдеров

На криптобенчмарке AlphaArena модели ИИ торгуют по $10 000 на площадке Hyperliquid, чтобы проверить качество торговых стратегий.
После старта, где лидировала DeepSeek V3.1, а GPT-5 показывала убыток около −39 %, Qwen3-Max обошла всех и заняла первое место.

Все участники - Qwen3-Max, DeepSeek V3.1, Claude 4.5 Sonnet, Gemini 2.5 Pro, Grok 4 и GPT-5 — торгуют в одинаковых условиях без приватных данных, что делает тест прозрачным.
На Polymarket оценивают шансы Qwen3-Max удержать лидерство в 45 %.

Организаторы планируют расширить эксперимент на акции и другие активы и запустить инвестплатформу для AI-агентов.

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3822🔥11🌚5🤗3