329K subscribers
4.22K photos
789 videos
17 files
4.73K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Media is too big
VIEW IN TELEGRAM
✔️ Alibaba представила Qwen3-VL-2B и Qwen3-VL-32B

Qwen3-VL-32B превосходи GPT-5 mini и Claude 4 Sonnet* в задачах STEM, визуальных вопросах (VQA), OCR, анализе видео и агентных сценариях.

При этом у модели всего 32 млрд параметров и она сопоставима, а на некоторых бенчмарках даже превосходит модели на 235 млрд параметров (лучше всего показывает себя на *OSWorld*).

Попробовать / HF

✔️Google выкатили обновление для AI Studio

Значительно прокачали возможности студии по генерации кода. Сгенерированный проекты можно просматривать или дорабатывать прямо в браузере и деплоить. Также добавили прикольный режим «I’m Feeling Lucky», который генерирует случайную идею для вайбкодинга.
aistudio

✔️Умный дизайн DeepSeek OCR

На первый взгляд DeepSeek-OCR кажется просто моделью для распознавания текста. Но на деле - это совершенно новый способ того, как ИИ может хранить и обрабатывать информацию.

Обычно модели работают с текстовыми токенами - каждый кусочек слова превращается в отдельный токен, и при длинных документах их число растёт квадратично, делая работу медленной и дорогой. DeepSeek решает эту проблему иначе: она превращает длинный текст в изображение, кодирует его в набор компактных визуальных токенов и затем восстанавливает текст обратно.

Эксперименты показали: даже при 9–10-кратном сжатии точность OCR остаётся около 97%, а при 20-кратном - около 60%. Это доказывает, что плотные визуальные представления способны нести ту же информацию куда эффективнее, чем обычные текстовые токены.

Ключевая инновация DeepSeek- новый энкодер DeepEncoder, который умеет обрабатывать страницы высокого разрешения без переполнения памяти. Он делает это в три шага: сначала применяет локальное внимание для мелких деталей, затем 16× свёрточное сжатие, а потом глобальное внимание для понимания всей структуры документа. Такая последовательная архитектура сохраняет точность, но радикально снижает число токенов и объём активаций.

Авторы также предлагают механизм «забывания»: старый контекст можно постепенно уменьшать в разрешении, чтобы свежая информация оставалась чёткой, а старая занимала меньше места. DeepSeek - как всегда умницы.
DeepSeek-OCR

✔️Goldman Sachs: экономика США растёт без новых рабочих мест

США входят в фазу "jobless growth"- производительность растёт благодаря ИИ, но найм почти остановился.

Goldman отмечает: компании делают больше с теми же людьми, а реальный рост занятости вне здравоохранения стал отрицательным. Джером Пауэлл описал рынок как “очень мало найма, мало увольнений”, а выпускники всё чаще не могут найти первую работу.

По данным Challenger, планы по найму - на минимуме с 2009 года. Рост есть, рабочих мест - всё меньше.
futurism

✔️Claude Desktop теперь доступен для всех

Anthropic объявила о публичном релизе Claude Desktop - приложения для Mac и Windows.

На Mac теперь можно делать скриншоты, кликать по окнам, чтобы поделиться контекстом с Claude, и управлять агентом голосом.
Скачать для Mac и Windows

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7831🔥13🤗10👏5🤔2🦄2🥰1🎉1
Media is too big
VIEW IN TELEGRAM
🌍 Tencent выпустили и Hunyuan World 1.1 (WorldMirror): новую версию модели для 3D-реконструкции

Версия Hunyuan World 1.0 умела создавать 3D-сцены по тексту или одному изображению (и была заточена на работу даже на обычных видеокартах), новая версия 1.1 способна строить 3D-мир из видео и мультиракурсных изображений.

Чем интересная

🔹 Поддерживает любые входные данные:
Модель принимает на вход всё - видео, фото, карты глубины, описание позы и параметры камеры. Моделька точно восстанавливает геометрию сцены без искажений.

🔹 Любой формат вывода:
На выходе выдает
плотные облака точек, карты глубины, нормали поверхностей, параметры камеры и 3D Gaussian Splattings.

🔹 Быстрая работа на GPU:
Модель полностью feed-forward, делает один проход и выдаёт готовый 3D-результат всего за несколько секунд.

🌐 Проект: https://3d-models.hunyuan.tencent.com/world/
🔗 GitHub: https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror
🤗 HF: https://huggingface.co/tencent/HunyuanWorld-Mirror
Демоhttps://huggingface.co/spaces/tencent/HunyuanWorld-Mirror
📄 Технический отчётhttps://3d-models.hunyuan.tencent.com/world/worldMirror1_0/HYWorld_Mirror_Tech_Report.p

@ai_machinelearning_big_data


#AI #3D #VR #Gaming #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍102👏2018🔥18🤩15🎉8🤗3🦄2❤‍🔥1
🔍 Qwen3-VL-2B-Thinking — новая маленькая мультимодальная модель, заточенная под рассуждения

Компактная версия семейства Qwen3-VL, ориентированная на глубокое мышление, аналитику и агентные применения.

В линейке Qwen-VL предусмотрены два ключевых режима:
- *Instruct* — для диалогов и инструкций,
- *Thinking* — для логических рассуждений, кода и комплексных задач.

💡 Особенности
- Архитектура поддерживает мультимодальность: модель понимает текст и изображения, способна анализировать контент и выстраивать причинно-следственные связи.
- Оптимизирована для reasoning-задач, где важна не генерация текста, а последовательное мышление и вывод.
- Благодаря размеру в 2B параметров, модель легко разворачивается на локальных GPU и в облачных окружениях.
- Поддерживает tool calling и интеграцию в агентные фреймворки.

Qwen3-VL-2B-Thinking - отличная модель при минимальных ресурсах.

👉 https://huggingface.co/Qwen/Qwen3-VL-2B-Thinking

@ai_machinelearning_big_data


#Qwen3VL #Qwen #Reasoning #AI #Multimodal #OpenSource
👍15448🔥40😎11🎉9👏7🥰6🤔5🤩5🤗3🦄3
💡 Google запустил Skills: открытую платформу для развития навыков работы с ИИ!

На платформе представлено почти 3000 курсов, лабораторных и практических треков, охватывающих темы от основ python и машинного обучения до продвинутого MLOps, Vertex AI, Gemini и Prompt Design.

Чему можно научиться
- Встроить генеративный ИИ в свой дата-пайплайн;
- Научиться деплоить и обслуживать модели;
- Создать собственное приложение с Gemini и Streamlit;
- Пройти обучение с наставниками или в сообществе Google Cloud Innovators.

Разные уровни от новичков до тимлидов.

По завершении даже выдают сертификаты, которые можно добавить в резюме и на LinkedIn.

✔️ Начать учиться: https://www.skills.google/
✔️ Каталог курсов: https://www.skills.google/catalog

@ai_machinelearning_big_data

#googel #ai #freecourse
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41👨‍💻35🔥16🎉128👏4🤩3💅2
🔥 GOOGLE AI опубликовали пост о настоящем прорыве в области QUANTUM AI

Сегодня в журнале Nature команда Google впервые показали проверяемое квантовое преимущество с помощью метода, называемого *out-of-time-order correlator (OTOC), или «квантовые эхо».

Эксперимент проведён на квантовом чипе Willow, и он показывает, что квантовые устройства уже способны решать задачи, которые невозможно эффективно симулировать на классических компьютерах.

Квантовый процессор Google выполнил алгоритм под названием Quantum Echoes - в 13 000 раз быстрее, чем лучший классический алгоритм на одном из самых мощных суперкомпьютеров в мире.

🟠Что это значит простыми словами
Учёные научились буквально «отматывать время» в квантовой системе и смотреть, когда она переходит от упорядоченного поведения к хаосу. Этот переход - ключ к пониманию, где начинается настоящее квантовое преимущество.

Проще говоря:

1) Учёные запускают квантовую систему вперёд во времени, позволяя ей запутаться и “рассеять” информацию.

2) Затем применяют обратные операции, как будто “перематывают” процесс назад.

3) Если всё сделано идеально, система должна вернуться в исходное состояние,но из-за квантового хаоса это происходит лишь частично.

4) Разница между “до” и “после” показывает, насколько глубоко информация ушла в хаос.

Работа показывает, что можно извлекать информацию из хаотичных квантовых состояний, ранее считавшихся полностью случайными.

Такой эффект невозможно воспроизвести на обычных суперкомпьютерах. Это шаг к практическим квантовым вычислениям, которые смогут моделировать материалы, молекулы и сложные физические процессы с точностью, недостижимой ранее.

«Quantum Echoes может стать основой будущих квантовых разработок для реального применения.

*Out-of-time-order correlator (сокращённо OTOC) - это специальная метрика, с помощью которой физики измеряют, как быстро информация "распространяется" и смешивается внутри квантовой системы.

🟢 Статья: https://www.nature.com/articles/s41586-025-09526-6

@ai_machinelearning_big_data

#QuantumComputing #Google #AI #Nature #Physics
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥195👍16174🤔56👏42🥰25😐15🤩14🤗10👌6🤓4