Media is too big
VIEW IN TELEGRAM
Учёные из UMass Amherst создали первый искусственный нейрон, который общается с живыми нейронами с тем же микроскопическим напряжением около 0,1 В, как в мозге.
Устройство использует белковые нанопроволоки бактерий, устойчивые к влаге, что позволяет прямую и энергоэффективную связь с живыми клетками. Большинство предыдущих искусственных нейронов работали на гораздо более высоких напряжениях и мощностях, авторы отмечают, что их устройство потребляет в 10 раз меньше напряжения и в ~100 раз меньше мощности по сравнению с ранними версиями.
sciencealert
Компания Krea AI выложила в открытый доступ Krea Realtime: 14B модель, которая генерирует видео в реальном времени со скоростью 11 кадров в секунду на одной NVIDIA B200.
Модель основана на Wan 2.1 14B и обучена с помощью метода Self-Forcing, что позволило добиться высокой скорости при всего 4 шагах инференса.
HF
Gemini теперь использует живые данные Google Maps - часы работы, рейтинги, маршруты и фото из 250 млн локаций. Модель отвечает на вопросы о местах не догадками, а на основе реальных данных. Разработчики могут передавать координаты и встраивать интерактивный виджет карт прямо в приложения.
Фича уже доступна в последних моделях Gemini и может сочетаться с другими инструментами.
Anthropic расширила возможности Claude, запустив версию Claude for Life Sciences, созданную для биомедицинских и лабораторных задач. Модель ревзошла человека в тесте Protocol QA (0.83 против 0.79) и интегрируется с ведущими научными платформами - Benchling, BioRender, PubMed, Wiley Scholar Gateway и 10x Genomics.
Claude теперь может выполнять автоматизацию лабораторных процессов - от проверки RNA-seq данных до генерации экспериментальных протоколов, используя систему Agent Skills.
Anthropic также запустила программу AI for Science с бесплатными API-кредитами для исследователей, чтобы ускорить внедрение ИИ в науку.
Claude
IBM разработала CyberPal 2.0 (4B–20B параметров), обученные на новом датасете SecKnowledge 2.0 с экспертными форматами и доказательной базой.
Модели показывают на 7-14% лучшие результаты, чем крупные аналоги, в задачах классификации уязвимостей и поиска первопричин.
Успех обеспечен не мощностью, а структурой и логикой рассуждений.
Paper
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥50❤26👍7🥰6🤔5😁2🤝2🐳1🤗1
OmniVinci - модель, способная одновременно понимать и обрабатывать разные типы информации: текст, изображения, видео и звук.
Модель крайне эффективна, несмотря на то, что была обучена всего на 200 млрд. токенов (что в 6 раз меньше, чем у Qwen2.5-Omni - 1.2 трлн.). Это стало возможным благодаря архитектурным фишкам и тщательному подходу к подготовке данных.
В основе OmniVinci 3 компонента:
Абляция показала, что вклад каждого элемента играет свою важную роль: базовая модель с простой конкатенацией токенов набирает в среднем 45.51 балла. Добавление TEG поднимает результат до 47.72 (+2.21), CRTE — до 50.25 (+4.74 от базовой), а финальный слой в виде OmniAlignNet доводит средний балл до 52.59, что в сумме дает прирост в 7.08 пункта.
Данные для обучения - 24 млн. диалогов, которые пропустили через систему, где отдельная LLM анализирует и объединяет описания из нескольких модальностей, создавая единую и корректную аннотацю.
Итоговый датасет на 36% состоял из изображений, на 21% из звуков, на 17% из речи, 15% - из смешанных данных и на 11% из видео.
В бенчах OmniVinci обошла всех конкурентов. На Worldsense модель набрала 48.23 балла против 45.40 у Qwen2.5-Omni. На Dailyomni - 66.50 против 47.45. В аудио-задачах OmniVinci тоже молодец: 58.40 в MMAR и 71.60 в MMAU.
В распознавании речи модель показала WER 1.7% на датасете LibriSpeech-clean.
Применение модели протестили на практике. В задаче классификации дефектов полупроводниковых пластин, OmniVinci достигла точности 98.1%, что лучше, чем у специализированной NVILA (97.6%), и у более крупную 40-миллиардную VILA (90.8%).
@ai_machinelearning_big_data
#AI #ML #NVIDIA #OmniVinci
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45❤18🔥8🤗3💅3🕊2🤣2
Media is too big
VIEW IN TELEGRAM
Qwen3-VL-32B превосходи GPT-5 mini и Claude 4 Sonnet* в задачах STEM, визуальных вопросах (VQA), OCR, анализе видео и агентных сценариях.
При этом у модели всего 32 млрд параметров и она сопоставима, а на некоторых бенчмарках даже превосходит модели на 235 млрд параметров (лучше всего показывает себя на *OSWorld*).
Попробовать / HF
Значительно прокачали возможности студии по генерации кода. Сгенерированный проекты можно просматривать или дорабатывать прямо в браузере и деплоить. Также добавили прикольный режим «I’m Feeling Lucky», который генерирует случайную идею для вайбкодинга.
aistudio
На первый взгляд DeepSeek-OCR кажется просто моделью для распознавания текста. Но на деле - это совершенно новый способ того, как ИИ может хранить и обрабатывать информацию.
Обычно модели работают с текстовыми токенами - каждый кусочек слова превращается в отдельный токен, и при длинных документах их число растёт квадратично, делая работу медленной и дорогой. DeepSeek решает эту проблему иначе: она превращает длинный текст в изображение, кодирует его в набор компактных визуальных токенов и затем восстанавливает текст обратно.
Эксперименты показали: даже при 9–10-кратном сжатии точность OCR остаётся около 97%, а при 20-кратном - около 60%. Это доказывает, что плотные визуальные представления способны нести ту же информацию куда эффективнее, чем обычные текстовые токены.
Ключевая инновация DeepSeek- новый энкодер DeepEncoder, который умеет обрабатывать страницы высокого разрешения без переполнения памяти. Он делает это в три шага: сначала применяет локальное внимание для мелких деталей, затем 16× свёрточное сжатие, а потом глобальное внимание для понимания всей структуры документа. Такая последовательная архитектура сохраняет точность, но радикально снижает число токенов и объём активаций.
Авторы также предлагают механизм «забывания»: старый контекст можно постепенно уменьшать в разрешении, чтобы свежая информация оставалась чёткой, а старая занимала меньше места. DeepSeek - как всегда умницы.
DeepSeek-OCR
США входят в фазу "
jobless growth
"- производительность растёт благодаря ИИ, но найм почти остановился. Goldman отмечает: компании делают больше с теми же людьми, а реальный рост занятости вне здравоохранения стал отрицательным. Джером Пауэлл описал рынок как “очень мало найма, мало увольнений”, а выпускники всё чаще не могут найти первую работу.
По данным Challenger, планы по найму - на минимуме с 2009 года. Рост есть, рабочих мест - всё меньше.
futurism
Anthropic объявила о публичном релизе Claude Desktop - приложения для Mac и Windows.
На Mac теперь можно делать скриншоты, кликать по окнам, чтобы поделиться контекстом с Claude, и управлять агентом голосом.
Скачать для Mac и Windows
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍54❤20🔥9🤗9👏5🤔2🦄2🥰1🎉1