329K subscribers
4.2K photos
779 videos
17 files
4.71K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Media is too big
VIEW IN TELEGRAM
✔️ Alibaba представила Qwen3-VL: новую мультимодальную модель, доступную в версиях 4B и 8B параметров.

Она поддерживает контекст длиной 256k токенов, расширяемый до 1 миллиона, и способна работать с открытой лексикой, распознавая всё - от товаров до знаменитостей.

Внутри два режима: Instruct и Thinking, предназначенные для задач по математике, генерации кода и логическим рассуждениям. Улучшена система OCR - теперь модель поддерживает 32 языка даже при низком качестве сканов, а также понимает пространственные сцены в 2D и 3D.

По многим задачам модель показывает результаты лучше или почти на уровне Qwen2.5-VL-72B, что делает её одним из самых мощных открытых мультимодальных решений. Лицензия: Apache 2.0.
HF

✔️ Сэм Альтман сообщил, что OpenAI ослабит ограничения ChatGPT и с декабря 2025 года разрешит эротический контент для подтверждённых взрослых пользователей.

Компания объясняет, что ранние версии ChatGPT были «достаточно ограниченными» из-за риска вреда при обсуждении психических тем. Теперь OpenAI утверждает, что им удалось снизить серьёзные риски вредных ответов и при этом сохранить защитные механизмы для кризисных ситуаций.

Обновление также добавит возможность включать более “человечный” стиль общения - с эмоциями, эмодзи и дружеской манерой, если пользователь сам этого хочет.

Все изменения будут привязаны к системе возрастной верификации, разделяющей взрослых и несовершеннолетних.

Теперь OpenAI делает ставку на контролируемое расширение свободы взрослых пользователей, сохраняя баланс между безопасностью и реализмом общения.
X

✔️ Telegraph пишет - западные топ-менеджеры возвращаются из Китая с чувством восхищения и ужаса.

После топосещения Китая много СЕО, пишут, что заводы Китая настолько автоматизированные и эффективные, что западные производства выглядят невероятно устаревшими.

Китай больше не «дешёвая фабрика мира», а высокотехнологичная держава, которая двигает вперёд инновации в робототехнике, электромобилях и чистом производстве.

После таких поездок многие задаются вопросом - способен ли Запад ещё конкурировать в гонке, которую Китай теперь бежит быстрее и умнее.
telegraph

✔️ Gemini 3 Pro за один промпт создаёт симуляцию macOS или Windows прямо в браузере - с полноценным интерфейсом, меню, анимациями, встроенным браузером и терминалом.

Всего 900 строк кода - и рабочая система готова. Модель выполняет задачу за 172 секунды, показывая уровень генерации интерфейсов, недостижимый для прежних LLM.

Код и демо уже опубликованы, а инсайдеры сообщают, что официальный релиз ожидается на этой неделе. Первые тестеры называют Gemini 3 Pro лучшим ИИ для кодинга на данный момент.
Демо и код.

✔️ Исследователи из UC San Diego и Университета Мэриленда показали, что с помощью оборудования всего за $800 можно перехватывать трафик с геостационарных спутников - многие каналы связи до сих пор не шифруются.

Используя обычную антенну и приёмник, они обнаружили, что половина спутниковых каналов передаёт данные в открытом виде: звонки, SMS, интернет-трафик и даже военные сигналы.

С крыши лаборатории в Сан-Диего исследователи перехватили 2,7 тыс. телефонных номеров T-Mobile за 9 часов, а также части разговоров. На каналах AT&T Mexico и Telmex передавались контрольные сигналы и голосовые данные в чистом виде.

Даже военные и правительственные системы передавали телеметрию, координаты и внутренние команды без шифрования.
wired

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4821😨11🥰4
✔️ VK запускает RecSys Challenge — соревнование по рекомендательным системам

Команда AI VK открыла регистрацию на VK RecSys Challenge — масштабное соревнование по созданию алгоритмов рекомендаций. В этом году командам и участникам предстоит решить одну из самых сложных задач индустрии — cold start. 🧠

В прошлом году более 1000+ участников решали задачу по предсказанию явного фидбэка (лайков/дизлайков) клипов, а в этом челендж посложнее. Обычно рекомендательные системы анализируют поведение пользователя и предлагают контент на основе прошлых взаимодействий. Здесь задача зеркальна: нужно предсказать, кому понравится новый клип, которого еще никто не видел. Участникам предстоит работать с реальными данными свежего датасета VK-LSVD, включающего 40 млрд обезличенных взаимодействий с 20 млн коротких видео.

Принять участие могут команды до 4 человек или индивидуально, а призовой фонд составит 2,5 млн рублей.

@ai_machinelearning_big_data


#news #ml #recsys #vkdataset #coldstart #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
523😁14👍9🔥9🗿2
Media is too big
VIEW IN TELEGRAM
✔️ Anthropic представила Claude Haiku 4.5: быструю и дешёвую версию Sonnet 4

Новая компактная модель Haiku 4.5 выдает уровень качества Sonnet 4, но при этом работает в два раза быстрее и стоит в три раза дешевле.

Она справляется с широким спектром задач - от написания кода до работы с компьютером и показывает отличные результаты как вспомогательный агент в связке с более мощной моделью Sonnet 4.5.
claude

✔️ Google выпустила Veo 3.1

Обновлённая нейросеть для генерации видео теперь создаёт кадры кинематографического уровня, с реалистичным светом, тенями, движением и деталями без артефактов.

Veo 3.1 научилась лучше понимать сюжет и контекст, генерировать целые истории и сиквелы, а также в разы лучше понимает русский язык.
Цензуру заметно ослабили - теперь творческая свобода почти не ограничена.
google

✔️ PyTorch 2.9: новый релиз, который приносит серьёзные улучшения в производительности, совместимости и удобстве разработки.

Главное новшество - стабильная ABI для libtorch, это позволяет создавать C++ и CUDA-расширения без риска поломок при обновлениях.
Также добавлена symmetric memory - технология для ускорения вычислений между несколькими GPU, упрощающая обмен данными между видеокартами.

Платформа стала ещё более универсальной: теперь официально поддерживаются ROCm, XPU и CUDA 13, а также улучшена оптимизация под Intel, Arm и x86 процессоры.

В разработке приняли участие 452 контрибьютора, внесено более 3 тысяч коммитов - PyTorch продолжает задавать темп в мире open-source AI.
pytorch

✔️ OpenAI готовит $1 триллион на вычислительные мощности: масштаб как у двадцати ядерных реакторов

Финансирование опирается на три ключевых направления: рост собственных доходов (AI-агенты, видео-модель Sora, реклама и встроенные покупки), выпуск долговых инструментов и партнёрские инвестиции через схему “чужих балансов” - когда инфраструктуру частично оплачивают крупные партнёры. Проект Stargate при этом позволяет OpenAI при необходимости продавать избыточные вычислительные мощности обратно на рынок.

Сейчас годовой доход компании оценивается в $13 млрд, при этом 70% приносит платная подписка ChatGPT. Из 800 млн пользователей платит только 5%, но OpenAI намерена удвоить этот показатель. В Индии уже появились дешёвые тарифы, а реклама тестируется с осторожностью.

При всём росте первая половина года принесла $8 млрд убытков, поэтому ставка делается на снижение себестоимости вычислений и масштабирование дата-центров. Около двух третей затрат приходятся на полупроводники, что вызывает критику за “круговое финансирование”, когда инвестиции возвращаются к поставщикам чипов.

Руководство уверено, что растущий спрос и падение стоимости оборудования позволят сделать проект реалистичным и укрепить доверие кредитных рынков.
ft

✔️ Исследователи показали: масштабировать контекст LLM проще, чем думали

Команда представила Recursive Language Models (RLMs) - новый метод инференса, позволяющий моделям рекурсивно разбирать длинные промпты, как в среде REPL.

RLM делит огромный ввод на части и обрабатывает их пошагово, без ограничений по длине контекста. Для пользователя это выглядит как обычный вызов модели, но внутри она рекурсивно вызывает себя для промежуточных вычислений.

На тесте OOLONG RLM на базе GPT-5-mini превзошёл GPT-5 на 110% при 132k токенах и стоил дешевле.
На BrowseComp-Plus RLM-модели обработали до 10 млн токенов без потери качества, опередив схемы с поиском и ретривером.

Главная цель RLM - устранить “context rot”, когда модели “забывают” длинные диалоги.
Рекурсивный подход может стать ключом к практически бесконечному контексту без сложных обходных решений.
Github

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
53👍16🔥7🥰1👌1👀1💘1
🤗 Кто реально двигает open-source ИИ: анализ топ-50 самых скачиваемых моделей на Hugging Face

Исследование показывает, какие организации и типы моделей определяют экосистему открытых моделей.


🔥 Главное:
📦 Топ-50 - это всего 3.4% всех моделей на Hugging Face, но именно они собирают более 80% из 45 миллиардов скачиваний.

Подавляющее большинство активности сосредоточено вокруг небольшой группы лидеров -
именно эти модели формируют лицо всего open-source ИИ.

📉 Размер имеет значение (и чем меньше — тем лучше):
- 92.5% загрузок — модели < 1B параметров
- 86.3% — < 500M
- 70% — < 200M
- 40% — < 100M

Очевидны выводы: в open-source побеждают малые и лёгкие модели, пригодные для локального развёртывания и edge-инференса.

🧠 Популярные направления:
- NLP — 58.1%
- Computer Vision — 21.2%
- Audio — 15.1%
- Multimodal — 3.3%
- Time Series — 1.7%

Кто создаёт самые скачиваемые модели:
- Компании - 63.2% (Google лидер)
- Университеты - 20.7%
- Индивидуальные авторы - 12.1%
- НКО - 3.8%
- Прочие лаборатории - 0.3%

Какие типы моделей побеждают:
- Текстовые энкодеры - 45% всех загрузок
- Декодеры - всего 9.5%
- Энкодер-декодеры - 3%

📌 Несмотря на хайп вокруг LLM, массово скачиваются не гиганты, а утилитарные модельки для интеграции в собственные продукты.

🇺🇸 Лидеры по странам:
США доминируют по всем категориям:
- встречаются 18 раз среди топ-50 скачиваний
- на США приходится 56.4% всех загрузок

Open-source ИИ живёт не за счёт гигантских LLM, а благодаря компактным, быстрым и практичным моделям, мкоторые реально работают в продуктах и проектах.

🟠 Почитать полностью: https://huggingface.co/blog/lbourdois/huggingface-models-stats

@ai_machinelearning_big_data


#AI #HuggingFace #OpenSource #ML #Research #LLM #AITrends
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥8337❤‍🔥10👍64😐2🆒1💘1
Media is too big
VIEW IN TELEGRAM
✔️ 19% старшеклассников уже имели «романтические отношения» с ИИ-чатботом или знают кого-то, кто имел.

Такой вывод сделал Центр демократии и технологий (CDT) в новом отчёте о влиянии искусственного интеллекта на школьную жизнь.

ИИ стремительно становится нормой: 85% учителей и 86% учеников уже им пользуются, причём чаще - в личных целях, а не для учёбы. Почти половина школ (46%) официально разрешают использование ИИ-инструментов.

Подростки активно взаимодействуют с чатботами - 56% делают это еженедельно, а 31% используют для этого школьные аккаунты и устройства. При этом в классах, где ИИ используется чаще, ученики чувствуют меньшую связь с преподавателями и чаще обращаются за помощью к алгоритмам.

Отчёт фиксирует и проблемы: утечки данных происходят в 23% школ, системы мониторинга следят за учениками даже вне школы и на личных устройствах, но доверие к ним низкое. Лишь 21% учебных заведений имеют протоколы для случаев deepfake или утечки интимных изображений.
cdt

✔️ Anthropic представила Claude Skills: новую систему «папок навыков», которая делает Claude универсальным офисным ассистентом.

Claude Skills - это настраиваемые папки с инструкциями, скриптами и ресурсами, которые модель автоматически загружает для выполнения конкретных задач. Теперь Claude может самостоятельно создавать таблицы Excel с формулами, презентации PowerPoint, документы Word и заполняемые PDF-файлы.

Функция доступна пользователям тарифов Pro, Max, Team и Enterprise, которые могут создавать, изменять и делиться своими Skill-папками в приложениях Claude, Claude Code и через API. Это позволяет адаптировать модель под нужды компании или конкретной команды.

Anthropic также запустила интеграцию с Microsoft 365 через MCP-коннектор. Благодаря этому Claude теперь умеет искать документы в SharePoint и OneDrive, анализировать переписки в Outlook, находить инсайты в чатах Teams и выполнять поиск по всем корпоративным приложениям сразу.
anthropic

✔️ Исследователи предложили единое определение AGI - искусственного общего интеллекта.

Сегодня нет единого понимания, что именно считать AGI. OpenAI уже несколько раз меняла своё определение и теперь использует 5-уровневую шкалу развития, а Google DeepMind применяет собственные критерии. Из-за этого прогнозы появления AGI сильно различаются.

Авторы нового исследования считают, что унифицированное определение необходимо, чтобы чётко фиксировать прогресс и прекратить использовать термин «AGI» как маркетинговый слоган.

Исследователь koltregaskes предложил следующее определение:

AGI - это искусственный интеллект, который демонстрирует способности на уровне или выше среднего человека в десяти когнитивных областях из модели Кэттелла–Хорна–Кэрролла (CHC), описывающей структуру человеческого интеллекта.


В работе также сравниваются подходы OpenAI и Google DeepMind, что делает её первой попыткой сформировать научно измеримое определение AGI, а не абстрактное маркетинговое обещание.
X

✔️ Huawei представила SINQ - новый метод квантования для больших языковых моделей.

Исследователи из Huawei CSL разработали технику Sinkhorn-Normalized Quantization (SINQ) — быстрый и точный метод уменьшения размера моделей без предварительной калибровки и потери качества.

Главная идея - применять двойное масштабирование весов по строкам и колонкам, что помогает равномерно распределить ошибку квантования и сохранять стабильность модели даже при понижении разрядности до 4 бит.

Метод показал впечатляющие результаты:
- квантование модели Qwen3-14B занимает всего 21 секунду,
- для DeepSeekV2.5-236B — около 5 минут на одной GPU.

SINQ не требует повторного обучения и работает с любыми архитектурами - это делает его удобным решением для разработчиков, которые хотят запускать крупные модели на слабом железе.
github


@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4525👍12😁5😢2💘1
✔️ Андрей Карпаты: “ИИ лишит человечество возможности принимать решения”

В новом интервью Андрей Карпаты рассказал, почему современные языковые модели не учатся как люди - и почему нас ждёт медленная, но неизбежная потеря контроля.

Он считает, что обучение с подкреплением и это тупиковый путь: модели не думают, а просто копируют и повторяют.

«Reinforcement learning ужасен. Просто всё, что было до него, ещё хуже.»


Андрей отмечает, что люди учатся, создавая собственные данные - размышляя, связывая новое со старым, делая выводы. LLM этого не умеют, они просто запоминают.

Главное, по его словам, впереди - не сингулярность, а тихое делегирование мышления алгоритмам.


«ИИ лишит человечество возможности принимать решения. Мы перестанем думать и выбирать сами.»

Карпаты считает, что нынешние агенты — «полное г…», а настоящего AGI стоит ждать не раньше чем через 10 лет.

Он боится не бунта машин, а того, что люди незаметно перестанут быть разумными - просто передав все решения системам, которые “знают лучше”.
Полное интервью

✔️ Epoch AI: даже GPT-5 не дотягивает до 70 % по уровню математического интеллекта

Исследователи из Epoch AI проверили, насколько современные модели действительно умеют «думать» в математике.
Они использовали тест FrontierMath - 290 задач, которые требуют не запоминания формул, а настоящего рассуждения и способности к обобщению.

Результаты оказались отрезвляющими.
Даже GPT-5, одна из самых мощных моделей на сегодня, смогла решить только 29 % задач в одном прогоне.
После 32 запусков (чтобы компенсировать случайность) показатель вырос до 46 %, но затем перестал расти.

Даже если объединить результаты десятков моделей - от ChatGPT Agent и Gemini 2.5 Deep Think до o4-mini, совокупная решаемость достигает лишь 57 %.
По оценкам авторов, даже при бесконечных попытках предел будет меньше 70 %.

Итог: несмотря на огромный прогресс, современные LLM остаются далеки от настоящего "AGI" - они всё ещё плохо справляются с глубинным рассуждением и гибким решением задач, где нужно не память, а мышление.

✔️ У современных LLM прогрессирует Brain Rot: обучение на мусорных данных вызывает деградацию интеллекта

Исследователи сообщили о тревожном эффекте - у больших языковых моделей (LLM) может развиваться “Brain Rot”, то есть постепенное «когнитивное разложение».

Причина - постоянное дообучение на низкокачественных и “вирусных” текстах из интернета, что приводит к стойкому снижению способностей к рассуждению, работе с длинным контекстом и безопасному поведению.

Главный симптом - “отсутствие мышления” (thought-skipping): модель перестаёт рассуждать шаг за шагом и начинает выдавать поверхностные ответы, а в некоторых случаях даже приобретает “тёмные” черты личности - нарциссизм, агрессию и низкую склонность к сотрудничеству.

Даже сильные методы коррекции, лишь частично устраняют последствия, что делает отбор обучающих данных ключевым фактором безопасности при развитии ИИ.
openreview

✔️ FacebookResearch представили MobileLLM-Pro - мощную языковую модель для работы на девайсах

Это компактная языковая модель (~1 млрд параметров) и несмотря на размер, она превосходит Gemma 3 1B и Llama 3.2 1B в задачах рассуждения, знаний и работы с длинным контекстом - до 128 000 токенов.

Внутри гибридное внимание (локальное + глобальное в соотношении 3:1, окно 512) это низкую задержку и экономию KV-памяти.
Подробнее

✔️ HuggingChat v2 - целый оркестр из 115 моделей под одной крышой.

Инструмент, в который встроено более 100 опенсорсных моделей от ведущих разработчиков.

Внутри: модели от OpenAI, Qwen, Google, Nvidia, DeepSeek и десятков других. Система сама выбирает оптимальную модель под конкретный запрос.
Попробовать

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍8232💯8🔥6😁4🤬1🥱1💘1