330K subscribers
4.17K photos
770 videos
17 files
4.69K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
🚀 Релиз: Qwen3-Next-80B-A3B - эффективная модель заточенная на работа работу с очень длинным контекстом!

🔹 80B параметров, но активируется только 3B на токен → тренировка и инференс 10x дешевле и быстрее, чем у Qwen3-32B (особенно при 32K+ контексте).
🔹 Гибридная архитектура: Gated DeltaNet + Gated Attention → сочетает скорость и точность.
🔹 Ultra-sparse MoE: 512 экспертов, маршрутизируется 10 + 1 общий.
🔹 Multi-Token Prediction → ускоренное speculative decoding.
🔹 По производительности обходит Qwen3-32B и приближается к Qwen3-235B в рассуждениях и long-context задачах.

🟢Qwen3-Next-80B-A3B-Instruct показатели почти на уровне 235B flagship.
🟢 Qwen3-Next-80B-A3B-Thinking превосходит Gemini-2.5-Flash-Thinking.

Попробовать: https://chat.qwen.ai
Анонс: https://qwen.ai/blog?id=4074cca80393150c248e508aa62983f9cb7d27cd&from=research.latest-advancements-list
HuggingFace: https://huggingface.co/collections/Qwen/qwen3-next-68c25fd6838e585db8eeea9d
ModelScope: https://modelscope.cn/collections/Qwen3-Next-c314f23bd0264a
Kaggle: https://kaggle.com/models/qwen-lm/qwen3-next-80b
Alibaba Cloud API: https://alibabacloud.com/help/en/model-studio/models#c5414da58bjgj

@ai_machinelearning_big_data

#AI #LLM #Qwen #DeepLearning #MoE #EfficientModels #LongContext #Reasonin
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
71👍33🔥21🌭2👏1
⚡️ Ling-flash-2.0 теперь в открытом доступе! ⚡️

Модель 100 B параметров, но задействовано всего ≈6.1B активных, что делает модель очень экономной.

🚀 Чем хороша Ling-flash-2.0
- Обучена на более чем 20 триллионах токенов с до-обучением и RL-этапами.
- Демонстрирует state-of-the-art производительность среди плотных моделей до 40B параметров.
- Особенно хороша в сложном рассуждении, генерации кода и задачах с фронтендом.

⚙️ Архитектура и эффективность
- MoE-архитектура с активированием лишь части параметров (activation ratio 1/32).
- Много технических фишек: продвинутое распределение экспертов, баланс внимания, схема маршрутизации без вспомогательных потерь и др.
- На железе H20 модель генерирует 200+ токенов в секунду - в 3× быстрее по сравнению с плотной моделью 36B.
- Поддерживает контексты до 128K токенов (с YaRN).

https://huggingface.co/inclusionAI/Ling-flash-2.0

@ai_machinelearning_big_data


#moe #llm #ml #ai #opensource
👍32349👏26🔥21🎉16😁10🤩8🥰7😢5😍5🏆5
🚀 Новая китайская модель LongCat-Flash-Thinking

🧠 Это модель для рассуждений, которая показала SOTA-результаты среди open-source решений.

Основное:
- Архитектура MoE, 560B параметров, из них 27B активируются.
- Эффективность: требует на **64,5% меньше токенов**( чем другим открытым моделям того же класса), чтобы достичь топ-результатов на AIME25 (с нативным использованием инструментов,).
- Контекст: 128k, обучение с усилением на задачах рассуждений и кода, многоэтапное пост-тюнинг обучение с мультиагентным синтезом.
- Инфраструктура: асинхронный RL даёт 3x ускорение по сравнению с синхронными фреймворками.

⚙️ Оптимизации для продакшена:
- Свои оптимизированные ядра для работы с MoE и специальные приёмы распределённого обучения,
- KV-cache reduction, квантование, chunked prefill,
- статическая/эластичная маршрутизация, peer-to-peer cache transfer, heavy-hitter replication и PD-disaggregation.
- Поддержка SGLang и vLLM для эффективного деплоя.

📊 Бенчмарки:
- Лидирует в tool use (**τ²-Bench, VitaBench**)
- Хорошие результаты по instruction following (**IFEval, COLLIE, Meeseeks-zh**).

Китайцы стабильно удерживают лидерство в reasoning-моделях.

🟠 HF: https://huggingface.co/meituan-longcat/LongCat-Flash-Thinking

@ai_machinelearning_big_data


#AI #LLM #Reasoning #MoE #DeepLearning #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4018🥰7👍4💘1
This media is not supported in your browser
VIEW IN TELEGRAM
💡 RND1 - новая экспериментальная модель с 30 миллиардами параметров, построенная по архитектуре Sparse Mixture-of-Experts, где активно 3 миллиарда параметров.

Она была преобразована из предварительно обученной авторегрессионной модели (Qwen3-30B-A3B) и затем дополнительно обучена на 500 миллиардах токенов, чтобы полностью поменять поведениие диффузионной модели.

Обычные модели (AR, автогрессионные) пишут текст слово за словом, а RND1 создаёт всё предложение сразу и потом пошагово уточняет его, как будто “проявляет” текст из шума.

Это - Diffusion Language Model (DLM), аналог диффузионных моделей, которые рисуют картинки, только здесь она “рисует” слова.

🔄 Как её сделали

Команда Radical Numerics придумала, как превратить готовую модель в диффузионную без обучения с нуля.

Они просто поменяли тип внимания и дообучили модель на новой задаче.

Этот метод называется AR-to-Diffusion Conversion (A2D) - то есть конверсия из автогрессионной модели в диффузионную.

Как это происходит:
1. Берут сильную GPT-подобную модель.
2. Меняют механизм внимания — теперь модель видит весь контекст сразу.
3. Продолжают обучение по диффузионной задаче.
4. Используют разные скорости обучения для разных частей сети, чтобы модель не забыла старое, но научилась новому способу мышления.

⚙️ Что под капотом

Mixture-of-Experts (MoE) - у модели 30 млрд параметров, но реально работают только 3 млрд за раз. Это делает её мощной, но экономной.

Непрерывное дообучение - старые знания не стираются, а “встраиваются” в новый режим.

Огромные батчи - модель учится на больших партиях данных, чтобы стабилизировать обучение, ведь она не обрабатывает все токены сразу.

✔️ Чем RND1 интересна:

- Параллельная генерация - текст создаётся быстрее, без пошаговой задержки.
- Меньше затрат - активных параметров всего 3 млрд, при этом качество как у больших GPT.
- Новая архитектура - открывает дорогу гибридным моделям, сочетающим плюсы AR и DLM.
- Полностью открытый код и веса - можно исследовать, изменять, запускать самому.
- Первый серьёзный шаг к самосовершенствующемуся ИИ- модель может не только обучаться, но и помогать в проектировании следующей версии.

Это реально интересный метод, RND1 показывает, что ИИ можно не просто обучать, а перестраивать - менять его саму логику мышления без начала “с нуля”.

Похоже, это может стать фундаментом для систем Recursive Self-Improvement (RSI), когда ИИ способен создавать и улучшать самого себя.

🟠Blog: https://radicalnumerics.ai/blog/rnd1

🟠Code: https://github.com/RadicalNumerics/RND1

🟠Report: https://radicalnumerics.ai/assets/rnd1_report.pdf

🟠Веса: https://huggingface.co/radicalnumerics/RND1-Base-0910

🟠Видео: https://www.youtube.com/watch?v=M8XdNsecroo

@ai_machinelearning_big_data


#RND1 #RadicalNumerics #AI #DLM #DiffusionModel #MoE #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
👍69🔥3226