341K subscribers
4.23K photos
792 videos
17 files
4.74K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Дженсен Хуанг: США должны продавать чипы даже Китаю — это усилит наше лидерство в AI

Глава NVIDIA объяснил, почему экспорт AI-чипов — это не слабость, а стратегия:

🗣 «Половина AI-разработчиков в мире — китайцы. Пусть они строят свои системы на нашей технологии

💡 Что он имеет в виду:

— Если весь мир (включая Китай) работает на американских чипах, платформах и фреймворках,
— США получают техническое и инфраструктурное преимущество,
— А значит — долгосрочное лидерство в AI, даже если некоторые страны развивают собственные модели.

🔍 А как же риски? Военные, шпионские?

> «Они не будут строить военные системы на чужих чипах. Просто не могут себе это позволить

Технологии, от которых зависит твой конкурент— это не оружие. Это рычаг влияния.

И чем больше стран завязаны на американском стеке — тем выше шансы, что США останутся в центре мировой AI-инфраструктуры.

Еще из интересного, после того как MIT выпустили исследование о том, что ИИ якобы снижает когнитивные способности человека, Хуанг в своём стиле — дал "жесткий" ответ:

> “Я не читал это исследование, лол”
> “Я каждый день пользуюсь ИИ — и мои когнитивные навыки только растут”

Критическое мышление никто не отменял
> “Я не принимаю ответ как есть — я его анализирую, критикую, уточняю”
> “Такой подход и развивает мышлени

Полное интервью Дженсена

@ai_machinelearning_big_data

#ai #Ml #nvidia
Please open Telegram to view this post
VIEW IN TELEGRAM
157👍95😁34🤣21🔥98🙉3
🔅 Elon Musk винит "плохие данные" за провалы Grok. Но это не вся правда

Elon Musk заявил, что проблемы Grok (например когда модель считала себя Гитлером) связаны с "плохими обучающими данными", и пообещал, что в версии v7 всё будет исправлено, потому что они "очистят датасет".

▶️ Звучит просто. Но если всё дело в данных — зачем тогда продолжают выпускать Grok-4, зная, что он обучен на том же грязном корпусе?

Это больше похоже на попытку перевести фокус с реальных проблем, которые глубже и серьёзнее:

– Выравнивание (alignment) становится всё сложнее
– Проблемы не только в данных, а в самой архитектуре, управлении памятью, RLHF и недостаточной прозрачности модели
– “Плохие данные” — это симптом, а не корень проблемы

Возможно, Grok просто не справляется с масштабом данных, и это не фиксятся «переобучением на v7».

📌 Мы всё ещё в той точке, где модели растут быстрее, чем понимание того, как их контролировать.

@ai_machinelearning_big_data

#elonmusk #grok
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥10751😁28😨18👍16💯10🤔9👌5🌭5
🔥 Сейчас проходит ICML 2025 — одна из главных конференций по машинному обучению.

Команда AI VK всю неделю делится обзорами самых интересных работ.

📌 Сегодня в центре внимания — трансформерная архитектура нового поколения: быстрая, простая и без softmax.
Авторы статьи *“MatMuls are Enough”* предлагают кардинально упрощённую модель, в которой механизм внимания сводится к чистым матричным перемножениям без нелинейностей, dropout и маскировок.

🔧 В архитектуре:
▪️ Удалён softmax — вообще ничего не добавлено взамен
▪️ Вместо нескольких голов внимания — одна большая
▪️ Упрощены нормализации и убраны residual-соединения
▪️ Всё написано на чистом PyTorch, без CUDA-оптимизаций

📈 Результат — линейная сложность по длине текста, отличная переносимость между устройствами и SOTA на GLUE и Long Range Arena.

Честно говоря, очень достойный претендент на главную инженерную идею ICML.

@ai_machinelearning_big_data
👍103🥱53❤‍🔥36🔥3411🤣5🐳3👻1
Forwarded from Python/ django
This media is not supported in your browser
VIEW IN TELEGRAM
🛠 Вышел новый генератор CAD‑моделей по чертежам — и он реально работает!

GenCAD умеет превращать чертежи в 3D‑модели и сразу генерирует параметрический CAD‑код. Для сложных и детализированных объектов он пока не подойдет, но с простыми деталями вроде винтиков и креплений справляется отлично.

📎 Идеально для быстрого прототипирования стандартных элементов.

📄 Статья: https://openreview.net/pdf?id=e817c1wEZ6
🔗 Сайт: https://gencad.github.io
💻 Код: https://github.com/ferdous-alam/GenCAD

@pythonl - погружение в Python
🔥12839🤷‍♂16🥰12👍8👏3😁3👨‍💻1
Machinelearning
✔️Turbo ML Conf 2025 от Т-Технологий — материнской компании Т-Банка — пройдет в России во второй раз. В этом году конфа для AI и ML- разработчиков пройдет в кластере “Ломоносов” 19 июля. В программе предусмотрено 5 блоков: NLP, CV & Speech, RecSys, Research…
📌Sampled Maximal Marginal Relevance (SMMR): новый метод от исследователей из T-Bank AI Research ускоряет работу рексистем и позволяет быстрее и разнообразнее формировать рекомендации в онлайн-сервисах по сравнению с другими известными методами.
Метод SMMR эффективнее решает эту проблему однотипных рекомендаций, случайным образом выбирая объекты из подходящего круга, а не только самые похожие. Благодаря этому рекомендации становятся разнообразнее, и пользователь чаще открывает для себя новое.

Скорость метода SMMR также превосходит известные аналоги, такие, как MMR (Maximal Marginal Relevance) и DPP (Determinantal Point Process). Алгоритм выбирает несколько объектов за одну итерацию и увеличивает объем выборки с каждым шагом. Это приводит к снижению количества необходимых шагов с 100 до 5–10 на размере выборки из 3000 кандидатов. По итогу, скорость новой методики в 2–10 раз выше MMR и DPP, а рост разнообразия рекомендаций составил 5–10%.

SMMR эффективно работает на больших объемах данных за счет снижения вычислительной сложности. По сравнению с классическими подходами, для списков из нескольких тысяч объектов алгоритм требует в 10–100 раз меньше итераций. При этом уровень случайности носит управляемый характер благодаря параметру «температуры». С его помощью степень случайности при выборе объектов можно регулировать, тем самым настраивая алгоритм под конкретные задачи.

Метод успешно протестировали на трех открытых датасетах: MovieLens (фильмы), Dunnhumby (покупки) и MIND (новости). Результаты оказались стабильными как в потребительских сценариях (подбор фильмов, товаров), так и в более динамичных — например, в рекомендациях новостей. Результаты представлены на ACM SIGIR, которая проходит прямой сейчас в Падуе. Cам метод уже размещен в открытой библиотеке на гитхабе. Кстати на Turbo ML Conf 2025 в Москве будет отдельная большая секция по рексистемам, не пропустите.

@ai_machinelearning_big_data

#news #ai #ml #ai #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7836🔥23🥱11🤣10🌭32🍾2😈1👀1
🧠 Как «вклеить» объект в картинку так, чтобы он выглядел естественно?

Это одна из самых сложных задач в семантической генерации:
🔸 нужно сохранить структуру сцены
🔸 вставить объект по текстовому описанию
🔸 и найти уместное место, а не просто налепить поверх

Большинство моделей с этим не справляются — объект добавляется не к месту или портит фон.

Новый метод Add-it от NVIDIA решает эту задачу без обучения модели.

Он расширяет механизм внимания в диффузионных моделях, чтобы учитывать сразу три источника:

1. Оригинальное изображение
2. Текстовый промпт
3. Промежуточную сгенерированную картинку

📌 Такой подход позволяет:
– сохранить геометрию сцены
– встроить объект туда, где он действительно мог бы быть
– не терять мелкие детали и текстуры

📊 Результаты:
– Add-it без дообучения обходит supervised‑модели
– На новом бенчмарке Additing Affordance показывает SOTA результат по «естественности размещения»
– В слепых тестах люди выбирают его в 80% случаев
– Улучшает метрики качества генерации

🟠Github: https://github.com/NVlabs/addit
🟠Demo: https://huggingface.co/spaces/nvidia/addit
🟠Paper: https://arxiv.org/abs/2411.07232
🟠Project: https://research.nvidia.com/labs/par/addit/

@ai_machinelearning_big_data


#NVIDIA #Diffusion #Addit #StableDiffusion #AIgen #ControllableGeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
83🔥33👍30👻7💯6❤‍🔥1
Media is too big
VIEW IN TELEGRAM
✔️ Эмбеддинг-модель Gemini от Google стала общедоступной.

Google объявила о выходе в общий доступ модели для создания текстовых эмбеддингов - Gemini-Embedding-001. Она доступна разработчикам через Gemini API и Vertex AI. С момента своего экспериментального запуска модель стабильно занимает лидирующие позиции в бенчмарке MTEB и поддерживает более 100 языков.

Gemini Embedding использует технику Matryoshka Representation Learning. Она позволяет разработчикам гибко настраивать размерность выходных векторов, чтобы оптимизировать производительность и затраты на хранение. Максимальная длина входных данных составляет 2048 токенов.

Стоимость использования модели : $0.15 за 1 миллион входных токенов. Доступ к ней можно получить через Gemini API, а бесплатно протестировать - в Google AI Studio.
developers.googleblog.com

✔️ Лаборатория суперинтеллекта в компании Марка Цукерберга обсуждает отказ от open-source.

Недавно созданное подразделение по разработке AGI инициировало дискуссию о кардинальном изменении стратегии компании. Ключевая идея - отказаться от развития флагманской open-source модели Behemoth в пользу закрытой архитектуры, по аналогии с OpenAI и Google. Такой шаг стал бы серьезным философским сдвигом для компании, которая годами продвигала открытый код и завоевала признание разработчиков.

Обсуждения пока находятся на ранней стадии и требуют одобрения Марка Цукерберга. Однако сама дискуссия, начатая новой командой под руководством Александра Ванга, указывает на возможный стратегический разворот гиганта соцсетей.
nytimes.com

✔️ В Grok появились анимированные 3D-персонажи.

xAI начала развертывание новой функции «Companions» для чат-бота Grok в приложении для iOS. Обновление добавляет в интерфейс интерактивных трехмерных персонажей, цель которых - сделать общение более персонализированным и выйти за рамки текстовых ответов. На данный момент функция доступна платным подписчикам SuperGrok.

Пользователи могут выбрать одного из двух анимированных аватаров: аниме-девушку Ani или красную панду Bad Rudy. Включить их можно в меню настроек. В компании обещают позже добавить третьего персонажа.
Elon Mask в сети Х

✔️ Топовые немецкие ученые в области Med AI переехали работать в Китай.

Два выдающихся специалиста из Германии, Роланд Эйльс и Ирина Леманн, присоединились к Университету Фудань в Шанхае. Их работа была ключевой в создании атласа клеток поджелудочной железы человека и использовании ИИ для прогнозирования рисков заболеваний.

Эйльс - всемирно известный математик и биолог, руководивший крупными национальными исследовательскими проектами. Леманн - профессор в области эпигенетики, возглавлявшая несколько международных научных конференций. Супруги опубликовали более 1000 научных работ и имеют свыше 100 000 цитирований.

В Университете Фудань они присоединились к Институту интеллектуальной медицины и планируют создать совместную немецко-китайскую ИИ-лабораторию.
scmp.com

✔️ Perplexity будет дообучать модели Kimi.

Глава Perplexity Аравинд Шринивас рассказал о планах компании начать пост-тренинг моделей Kimi от Moonshot AI. Решение было принято после внутренних тестов, которые показали, что потенциал Kimi сопоставим с GPT-4 и Claude.

Решающим фактором стало превосходство Kimi K2 в бенчмарках на программирование. В частности, в тесте SWE-bench Verified она показала результат 65.8%, значительно опередив Claude с его 50.2%.

В Perplexity рассчитывают, что дальнейшее дообучение модели усилит ее агентные возможности.
CEO Perplexity сети X

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍10043🥰11💘8💋1
🌟 MUVERA: уравниваем в скорости многовекторный и одновекторный поиск.


MUVERA - алгоритм, разработанный Google Research, который сводит сложную задачу многовекторного поиска обратно к простому и быстрому MIPS, как в подходах с одним вектором.

Суть проста: вместо того чтобы работать с громоздким набором векторов, MUVERA сжимает его в единый вектор фиксированной длины, так называемый Fixed Dimensional Encoding (FDE). Главный трюк в том, что скалярное произведение этих новых FDE-векторов очень точно аппроксимирует исходную, «честную» метрику Чамфера.

На практике процесс выглядит как двухэтапный конвейер. Сначала MUVERA генерирует FDE для всех документов в базе и индексирует их с помощью обычного MIPS-солвера. Когда приходит запрос, для него тоже создается FDE, и система молниеносно находит небольшой список кандидатов. А уже затем этот короткий список переранжируется с использованием оригинальной, медленной, но точной метрики Чамфера. На выходе получаем и скорость, и качество.

В практическом сравнении с предыдущим SOTA методом PLAID, MUVERA показывает в среднем на 10% более высокую полноту выдачи при сокращении задержки на 90%. Чтобы достичь того же качества, алгоритму требуется отобрать в 5-20 раз меньше кандидатов для финального переранжирования.

Более того, эти FDE-векторы отлично сжимаются — до 32 раз с минимальной потерей качества.

Для тех. кто хочет попробовать, в репозитории проекта на Github есть реализации MUVERA на Python и C++ .


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #MUVERA #GoogleResearch
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
18👍5822🔥17🥰5😁1
🤔 Хммм… интересно, почему же Grok снова на первом месте в апсторе в Японии?)

Grok Anime-Waifu: новый Ghibli-хайп?

Аниме-вайфу от Grok сейчас переживает тот же всплеск интереса, что и Ghibli‑стиль после выхода инструмента генерации изображений от ChatGPT🎌

xAI поймали незанятую нишу: 3D-аватары с крутым голосовым режимом и небольшой провокацией. Как бы вы ни относились к этой теме — массовый рынок тут есть, и он пока был пуст.

CharacterAI всё ещё в топ‑10 самых посещаемых AI-приложений в мире. Молодёжь массово проводит там часы в общении с вымышленными персонажами. Это о многом говорит — но мы не будем давать оценок деградация это или нет.

Важно другое: ни Google, ни OpenAI, ни Microsoft пока не вышли с 3D-аватарами с продвинутым голосовым режимом.

Все знали, что это огромный рынок, но опасались репутационных последствий — вспомните скандалы вокруг CharacterAI в прошлом году.

А xAI рискнули — и пока пожимают плоды . Аудитория молодая, хайп органический, конкуренты только приглядываются к теме. Быть первым в такой категории — значит занять особое место в головах (пустых и не очень) пользователей.

Так что да: xAI сделали ставку — и, похоже, угадали.


@data_analysis_ml
83👍36😁23🔥11🤣7😐5👏1🤔1
📌 EXAONE 4.0 — новая LLM от LG, уверенно конкурирующая с топами

LG AI Research представила EXAONE 4.0 , свою ризонинг-модель (предыдущие версии).

Разработчики называют ее «гибридным ИИ», и это не просто маркетинговый ход. По сути, это сплав классических языковых способностей с мощным механизмом логических рассуждений, унаследованным от предшественника EXAONE Deep.

Главная фишка — пошаговый подход к решению задач, основанный на выстраивании цепочки мыслей. Это позволяет модели хорошо справляться не только с текстами, но и со сложными областями вроде математики, науки и программирования.

В LG решили не размениваться на мелочи и не придумывать собственные удобные бенчмарки, а сразу вышли на глобальную арену.

Модель показала себя более чем достойно на самых сложных и актуальных тестах. Например, на GPQA-Diamond, который проверяет научные знания, она набрала 75.4 балла, а в математическом AIME 2025 — все 85.3. Судя по графикам, EXAONE 4.0 уверенно конкурирует как с открытыми, так и с передовыми закрытыми моделями на английском языке, а также демонстрирует отличные результаты на корейском и недавно добавленном испанском.

🟢На графиках видно: EXAONE 4.0 уверенно конкурирует с передовыми закрытыми и открытыми LLM на английском, а также остаётся одной из лучших на корейском рынке.

🟢 Модель вышла в двух вариантах:
1. EXAONE 4.0 Professional (32B параметров) — заточена под медицину, право и другие сложные предметные области. Уже сдала 6 национальных сертификационных экзаменов в Корее.
2. EXAONE 4.0 On‑Device (1.2B параметров) — работает офлайн прямо на устройстве. При этом она вдвое компактнее, но быстрее предыдущей версии. Идеально для задач с требованиями к приватности и скорости отклика.

Еще:
- Обучена на 14T токенах.
- Поддерживает Model Context Protocol (MCP)
- Поддерживает Function Calling — интеграция с внешними инструментами и API прямо через LLM.

📌 многозначная, высокая точность, локальная — всё это делает EXAONE одним из самых интересных релизов, в общем словом - топовая моделька.

🟠Подробнее: https://www.lgresearch.ai/blog/view?seq=576
🟠Model: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B

@ai_machinelearning_big_data

#AI #ML #LLM #EXAONE #LG
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍65🔥2510🥰10