Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.
Проект включает в себя все необходимое: и фронтенд, и бэкенд.
Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.
Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.
Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.
⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.
@ai_machinelearning_big_data
#AI #ML #DeepSearch #Google #Gemini #LangGraph
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤83👍43🔥22😁8
🤖 Gemini Robotics: автономный AI для роботов
Google представили Gemini Robotics On-Device — первую модель, объединяющую зрение, язык и действия, которая работает прямо на роботах, без постоянного подключения к интернету.
🔍 Что делает эту модель особенной:
🔹 Объединяет универсальность и точность Gemini, но работает локально
🔹 Моделька справляется со сложными задачами с двумя руками (манипуляции, сборка, перенос)
🔹 Обучается новым действиям всего по 50–100 демкам
Модель уже поддерживает разные типы роботов — от гуманоидов до промышленных двухруких манипуляторов. И это несмотря на то, что изначально она была обучена только на датасете ALOHA под управлением человеческих инструкций.
🛠 В догонку выпустили SDK Gemini Robotics — для разработчиков, которые хотят дообучить модель под свои нужды, включая тесты в физическом симуляторе MuJoCo.
🌐 Полностью автономная работа — идеально для кейсов с плохой связью или требованиями к высокой скорости отклика.
Gemini Robotics продолжает двигаться к будущему, где AI становится частью физического мира.
👉 Подробнее: https://goo.gle/gemini-robotics-on-device
@ai_machinelearning_big_data
#ai #robots #vlm #google #Gemini
Google представили Gemini Robotics On-Device — первую модель, объединяющую зрение, язык и действия, которая работает прямо на роботах, без постоянного подключения к интернету.
🔍 Что делает эту модель особенной:
🔹 Объединяет универсальность и точность Gemini, но работает локально
🔹 Моделька справляется со сложными задачами с двумя руками (манипуляции, сборка, перенос)
🔹 Обучается новым действиям всего по 50–100 демкам
Модель уже поддерживает разные типы роботов — от гуманоидов до промышленных двухруких манипуляторов. И это несмотря на то, что изначально она была обучена только на датасете ALOHA под управлением человеческих инструкций.
🛠 В догонку выпустили SDK Gemini Robotics — для разработчиков, которые хотят дообучить модель под свои нужды, включая тесты в физическом симуляторе MuJoCo.
🌐 Полностью автономная работа — идеально для кейсов с плохой связью или требованиями к высокой скорости отклика.
Gemini Robotics продолжает двигаться к будущему, где AI становится частью физического мира.
👉 Подробнее: https://goo.gle/gemini-robotics-on-device
@ai_machinelearning_big_data
#ai #robots #vlm #google #Gemini
❤41👍25🔥10🥰2
Позволяет можно запускать и управлять сразу несколькими AI-агентами для кодинга: Claude Code, Gemini CLI, Codex — всё в одном дашборде.
- параллельный запуск агентов
- трекинг задач
- переключение между моделями на лету
- встроенный review и контроль над результатами
- backend написан на Rust, frontend на React, всё разворачивается локально
Полностью open-source
@ai_machinelearning_big_data
#ai #aiagent #opensource #Claude #Gemini
Please open Telegram to view this post
VIEW IN TELEGRAM
❤97👍60🔥38🥰4😁3👏1
🔥 Google DeepMind выпустили Gemini 2.5 Deep Think — для Ultra‑пользователей
🚀 Характеристики:
> 📏 Контекст — 1 миллион токенов
> 🧾 На выходе — до 192k токенов
📊 И результаты на бенчмарках сумасшедшие:
— HLE : 34.8%
— Live Code Bench: 86.6%
— AIME 2025: 99.2%
🤯 Пока все обсуждают выход GPT‑5, Google тихонько выкатили топ модель.
Бенчмарки — огонь. Я уже подумываю оформить подписку на Ultra.
🟠 Анонс
@ai_machinelearning_big_data
#ai #ml #Gemini #google
🚀 Характеристики:
> 📏 Контекст — 1 миллион токенов
> 🧾 На выходе — до 192k токенов
📊 И результаты на бенчмарках сумасшедшие:
— HLE : 34.8%
— Live Code Bench: 86.6%
— AIME 2025: 99.2%
Бенчмарки — огонь. Я уже подумываю оформить подписку на Ultra.
@ai_machinelearning_big_data
#ai #ml #Gemini #google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍88❤30🔥26😁3🥰1👨💻1
🦾 Google представил Gemini Robotics-ER 1.5 - новую модель для роботов, которая умеет видеть, рассуждать, планировать и действовать в реальном мире.
Что она может:
- Понимать пространство и объекты вокруг.
- Разбивать задачу на шаги (например: «убери стол» → план действий).
- Подключать внешние инструменты - поиск, модели для анализа изображений и др.
- Балансировать скорость и точность: быстро реагировать или глубже анализировать.
- Работать безопаснее: учитывать вес предметов и физические ограничения.
Мир слишком сложен для роботов: окружение, сцены, объекты постоянно меняются.
Gemini Robotics-ER помогает роботам соединять понимание и действие.
📌 Пример: робот сортирует мусор.
Он узнаёт местные правила, распознаёт предметы, планирует действия и выполняет всё безопасно.
https://developers.googleblog.com/en/building-the-next-generation-of-physical-agents-with-gemini-robotics-er-15/
@ai_machinelearning_big_data
#Google #Gemini #Robotics #AI #PhysicalAgents
Что она может:
- Понимать пространство и объекты вокруг.
- Разбивать задачу на шаги (например: «убери стол» → план действий).
- Подключать внешние инструменты - поиск, модели для анализа изображений и др.
- Балансировать скорость и точность: быстро реагировать или глубже анализировать.
- Работать безопаснее: учитывать вес предметов и физические ограничения.
Мир слишком сложен для роботов: окружение, сцены, объекты постоянно меняются.
Gemini Robotics-ER помогает роботам соединять понимание и действие.
📌 Пример: робот сортирует мусор.
Он узнаёт местные правила, распознаёт предметы, планирует действия и выполняет всё безопасно.
https://developers.googleblog.com/en/building-the-next-generation-of-physical-agents-with-gemini-robotics-er-15/
@ai_machinelearning_big_data
#Google #Gemini #Robotics #AI #PhysicalAgents
🔥65👍23❤21🤔5💘2