Открытый препринт книги Тарсиса Соуза (Tharsis Souza), PhD Лондонсого университета, в которой представлен критический анализ проблем и ограничений, возникающих у инженеров и руководителей технических проектов при разработке приложений на основе LLM.
Цель книги, по заявлению автора – помочь создавать надежные и безопасные системы на основе LLM, избегая распространенных ошибок.
Она ориентирована на разработчиков, технических менеджеров проектов и технических руководителей, стремящихся к углубленному пониманию и преодолению практических трудностей, связанных с внедрением LLM.
В отличие от преобладающего дискурса, акцентирующего возможности LLM, книга сосредоточена на практических сложностях и потенциальных ошибках реализации, предлагая подробное руководство по их преодолению.
В книге рассматриваются проблемы: структурной ненадежности, управления входными данными, тестирования, аспектов безопасности и элайнмента, зависимости от поставщиков и оптимизации затрат.
Книга сопровождается репозиторием с практическими примерами на Python, анализом реальных сценариев и решений.
@ai_machinelearning_big_data
#AI #ML #LLM #Book #Tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1❤36👍28🥰2😁1
Проект "Deepdive Llama3 from scratch" - расширенный форк гайд-репозитория по созданию LLama-3 c нуля шаг за шагом.
Исходный проект был переработан, проактуализирован, улучшен и оптимизирован для того, чтобы помочь всем желающим понять и освоить принцип реализации и детальный процесс ризонинга модели Llama3.
@ai_machinelearning_big_data
#AI #ML #LLM #Tutorial #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤38👍24🔥8❤🔥2😨1
🎯 Суть проекта
Это эксперимент по обучению с подкреплением (Reinforcement Learning, RL), где агент учится играть в крестики-нолики (Tic-Tac-Toe) без использования сложных алгоритмов на чистом С.
Основная цель — продемонстрировать, как классические методы RL справляются с простыми играми.
🔥 Чем интересен?
Минимализм и простота
▪ Весь код написан на чистом C (~400 строк).
▪ Нет зависимостей — только стандартная библиотека.
▪ Идеален для изучения основ RL «с нуля».
Классический подход к RL
▪ Используется метод Temporal Difference (TD) Learnin
▪ Агент обучается через игру (self-play) и обновляет стратегию на основе наград.
Образовательная ценность
▪ Понятная визуализация процесса обучения (таблицы Q-значений).
▪ Пример того, как простая задача помогает понять фундамент RL.
Эффективность
▪ После обучения агент играет почти оптимально, избегая поражений.
▪ Код легко модифицировать для экспериментов (например, изменить размер доски).
📊 Как это работает?
Q-таблица хранит «ценность» каждого действия в конкретном состоянии.
Агент выбирает ход на основе текущих Q-значений (с добавлением случайности для исследования).
P.S. Если вы думаете, что RL — это только про AlphaGo и Dota 2, этот проект покажет, что даже в простых задачах есть глубина! 🧠
▪ Github
@ai_machinelearning_big_data
#rl #ml #ai #tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
👍69❤15🔥7🥱4
Небольшая статья, которая погружает в создание системы машинного перевода на базе модели T5, сочетая теорию с практикой: как настроить пайплайн перевода, генерировать альтернативные варианты и оценивать их через BLEU-метрику. Гайд балансирует между технической детализацией и понятным языком. Советы по установке библиотек, обработке ошибок и ссылки на документацию сэкономят время тем, кто только начинает работать с Transformers.
Примеры кода на Python, разбор параметров
num_beams, length_penalty и честные замечания о слабых местах модели (проблемы с испанским) будут полезны для разработчиков, которые хотят быстро внедрить перевод в свои проекты.Помимо базовой настройки есть объяснение, как расширить функционал: например, модифицировать метод
translate() для вывода нескольких вариантов перевода с оценкой уверенности модели, как работает beam search и переходные вероятности. Качество перевода — больная тема для NLP, и автор не идеализирует T5. Он показывает расхождения между внутренними баллами модели и объективной оценкой BLEU: даже высокие вероятности токенов не гарантируют точный перевод. Единственный минус — нет сравнения T5 с другими моделями (mBART). Но даже в таком виде статья - мастрид для всех, кто работает с мультиязычным NLP.
@ai_machinelearning_big_data
#tutorial
Please open Telegram to view this post
VIEW IN TELEGRAM
👍63🔥18🥰10❤5
Добиться от LLM нужного поведения - задача нетривиальная, особенно в тонкой настройке с помощью LoRA.
LoRA позволяет адаптировать модель под конкретные задачи, не переобучая ее целиком, но результат сильно зависит от правильно подобранных гиперпараметров. Небольшой, но очень полезный гайд от Unsloth - ваш гид по основным настройкам LoRA, которые помогут повысить точность, стабильность и качество, попутно снижая риск галлюцинаций и переобучения.
Успешное обучение - это, прежде всего, баланс. Слишком высокая скорость обучения может ускорить начальное обучение, но рискует дестабилизировать модель или привести к пропускам оптимальных решений. Слишком низкая замедлит процесс и, как ни странно, тоже помешает обучению или переобучит вашу LoRa. Оптимальный диапазон обычно лежит между 1e-4 и 5e-5.
Аналогично с эпохами: прогонять данные слишком много раз значит рисковать тем, что модель просто "зазубрит" датасет, потеряв способность к обобщению. Недобор эпох грозит недообучением, это когда модель так и не улавливает нужные паттерны.
Но вот, вы разобрались с эпохами и скоростью обучения и добрались до специфичных параметров LoRA, например - ранг. Это один из ключевых параметров, он определяет размерность "адаптеров", добавляемых к модели.
Больший ранг дает больше "места" для обучения, но требует больше памяти и времени. Следующий после ранга:
lora_alpha. Это своего рода усилитель для этих адаптеров. Часто его ставят равным рангу или удваивают, чтобы усилить влияние дообученных весов.Unsloth предлагает в своих ноутбуках отличные дефолтные параметры, основанные на большом накопленном опыте файнтюна моделей и предлагает проверенные решения для управления ресурсами и стабильностью.
Подбор гиперпараметров — это всегда итеративный процесс. Экспериментируйте, сверяйтесь с лучшими практиками, и тогда ваши дообученные модели покажут наилучшие результаты.
#AI #ML #LLM #Tutorial #LoRA #Unsloth
Please open Telegram to view this post
VIEW IN TELEGRAM
❤45👍28🔥10🥰5