Лидирующие позиции заняли Яндекс, Сбер и Т-банк. Исследование выявило, что разработчики ориентируются как на внутренний, так и на международный рынок. Также компании рассматривают open-source как способ развития отрасли.
Лидер рейтинга Яндекс представил 120 открытых решений. Среди них выделен топ-3:
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24❤8🔥5
Nemotron-Mini-4B-Instruct - небольшая модель, полученная в результате файнтюна, обрезки (pruning), дистилляции и квантования модели Minitron-4B-Base.
Эта модель оптимизирована для roleplay-сценариев, RAG QA и вызова функций на английском языке.
Практическое применение модели ориентировано на интеграции в гейм-разработке, преимущественно - в экосистеме NVIDIA.
Модель обучалась в период февраль-август 2024 года.
При создании Nemotron-Mini-4B-Instruct использованы техники Grouped-Query Attention (GQA) и Rotary Position Embeddings (RoPE).
Пример инференса в Transformers, шаблоны простого промпта и instruct- шаблон в карточке модели на Huggingface.
Есть неофициальные квантованные (imatrix) GGUF - версии модели в 8 разрядностях, от 3-bit (2.18 Gb) до 16-bit (8.39 Gb) для запуска в llama.cpp и LM Studio.
@ai_machinelearning_big_data
#AI #NVIDIA #LLM #ML #Nemotron
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21❤7🥰2
multi1 — это экспериментальный проект, вдохновленный моделью o1 от OpenAI, который позволяет использовать различные языковые модели: локальные (через ollama) и онлайн (Perplexity и Groq) через единый веб-интерфейс.
Цель проекта — изучение возможностей повышения способности языковых моделей к логическому мышлению путём применения стратегий промптинга.
Архитектура multi1 основана на использовании цепочек рассуждений, реализующих принцип динамической "Цепочки Мыслей" (Chain of Thought).
В отличие от o1, multi1 визуализирует все этапы рассуждений, предоставляя пользователю доступ к каждому шагу и позволяя наблюдать за логикой.
Тестирование показало, что multi1 способен решать простые логические задачи, которые обычно вызывают затруднения у LLM, с точностью 60-80%.
Например, multi1 достигает точности ~70% в популярном запросе "Сколько букв 'R' в слове 'strawberry'?" (n=10). Для сравнения, Llama-3.1-70b без промтинга показала 0% точности, а ChatGPT-4o - 30%.
# Set up the environment:
python3 -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt
# Copy the example environment file:
cp example.env .env
# Edit the .env file with your API keys / models preferences
# Run the streamlit UI interface
streamlit run app/main.py
@ai_machinelearning_big_data
#AI #ML #o1 #LLM #CoT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤23👍19🔥7😁3
Sparse Low Rank Adaptation (SaRA) - метод дополнительного обучения для диффузионных моделей, который использует "неэффективные" параметры с наименьшими абсолютными значениями в предобученной модели.
SaRA позволяет улучшить генеративные способности модели, адаптируя ее к новым задачам, сохраняя при этом обобщающие способности исходной модели. SaRA отличается простотой реализации, требуя модификации всего одной строки кода в исходном скрипте обучения.
Идея метода о том, что параметры модели с наименьшими абсолютными значениями, хотя и не оказывают существенного влияния на инференс модели, обладают потенциалом для обучения новым знаниям. Потенциал обусловлен не структурными ограничениями модели, а скорее случайностью процесса оптимизации во время обучения.
Чтобы предотвратить переобучение, которое может возникнуть из-за сильной способности к представлению разреженных матриц, в SaRA используется функция потерь на основе ядерной нормы (nuclear norm-based) для ограничения ранга обучаемых матриц.
Для более плотного использования "неэффективных" параметров, используется прогрессивная стратегия настройки параметров процесса файнтюна - на более поздних этапах обучения происходит повторный выбор "неэффективных" параметров для повышения адаптивности модели.
Для решения проблемы высокого потребления VRAM, характерной для методов selective PEFT, SaRA использует алгоритм «неструктурного обратного распространения ошибки». Этот алгоритм хранит и обновляет градиенты только для обучаемых параметров, значительно сокращая использование памяти во время обучения.
Проведенные эксперименты на моделях Stable Diffusion (14, 1.5, 2.0, 3.0) демонстрируют эффективность SaRA в сравнении с другими методами файнтюна:
⚠️ Метод был успешно протестирован на venv :
Python 3.9.5 и CUDA 11.8. Подробный туториал разработчик обещает выложить в репозиторий на Github до 30 сентября 2024 г. В планах проекта - поддержка Dreambooth и Animatediff. Сроки по реализации планов не уточняются.
# easily employ SaRA to finetune the model by modifying a single line of code:
from optim import adamw
model = Initialize_model()
optimizer = adamw(model,threshold=2e-3) # <-modify this line only
for data in dataloader:
model.train()
model.save()
# Save and load only the trainable parameters
optimizer = adamw(model,threshold=2e-3)
optimizer.load($path_to_save)
torch.save(optimizer.save_params(),$path_to_save)
@ai_machinelearning_big_data
#AI #ML #Finetuning #Diffusers #SaRA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12❤7🔥4👏3
Новостной дайджест
✔️ Mistral AI: обновление набора моделей по API и Pixtral в Le Chat.
Компания представила масштабное обновление: бесплатный доступ к платформе La Plateforme, обновление цен на всю линейку моделей, новую версию Mistral Small корпоративного класса и бесплатный доступ к модели Pixtral в Le Chat.
La Plateforme – это бессерверная платформа для тонкой настройки и создания моделей Mistral в виде конечных точек API. Теперь она предлагает бесплатный уровень доступа, позволяющий разработчикам экспериментировать, оценивать и создавать прототипы без каких-либо затрат.
Mistral AI также снижает цены доступа по API на всю линейку моделей. Цена на Mistral Nemo снижена на 50%, Mistral Small и Codestral – на 80%, а Mistral Large – на 33%.
Mistral Small v24.09 - последняя версия небольшой модели для задач перевода, реферирования, анализа тональности и других языковых задачи, не требующих полнофункциональных моделей общего назначения.
Mistral Small v24.09 с 22 млрд. параметров занимает место золотой середины между Mistral NeMo 12B и Mistral Large 2.
✔️ Microsoft 365 Copilot: вторая волна обновления, Copilot в офисном пакете.
Microsoft запускает вторую волну обновлений Microsoft 365 Copilot, объединяя веб-интерфейс, рабочие процессы и новый формат страниц "Pages" в единую систему для работы со знаниями.
Copilot Pages, динамическое и постоянное рабочее пространство с ИИ. Pages сохраняет созданный ИИ контент, позволяя редактировать, дополнять и делиться им с коллегами. Пользователи могут совместно работать над страницами с Copilot в режиме реального времени.
Copilot в Excel теперь общедоступен и работает с Python.
Copilot в PowerPoint может создавать презентации на основе идеи, используя Конструктор, использовать фирменные шаблоны компании благодаря функции Brand manager.
Copilot в Teams анализирует транскрипцию встречи, чат, предоставляя полную картину обсуждения и помогая не пропустить ни один вопрос или идею.
Copilot в Outlook с функцией "Расстановка приоритетов во входящих" поможет быстро находить важные сообщения, анализируя их содержание и контекст.
Copilot в Word позволит ссылаться на данные из различных источников, включая веб-страницы, документы Word и PowerPoint, PDF-файлы.
Copilot в OneDrive поможет быстро находить нужную информацию в файлах, обобщать и сравнивать до пяти файлов одновременно, предоставляя краткое и понятное описание деталей и различий.
Copilot agents - ИИ-помощники, разработанные для автоматизации и выполнения бизнес-процессов.
✔️ Google внедрит технологию проверки подлинности изображений.
Google разрабатывает технологию, которая позволит определить, было ли изображение снято камерой, отредактировано в программе типа Photoshop или создано с помощью модели GenAI.
В ближайшие месяцы в результатах поиска Google появится обновленная функция «Об этом изображении», которая позволит пользователям узнать, было ли изображение создано или отредактировано с помощью инструментов ИИ.
✔️ Китай заявил о прорыве в производстве оборудования для выпуска собственных чипов.
Это является важным шагом в преодолении санкций США, направленных на сдерживание полупроводниковых амбиций Пекина.
✔️ Mozilla запускает Solo: бесплатный no-code конструктор сайтов с ИИ.
Среди ключевых особенностей Solo - простая настройка, генерация контента с помощью ИИ, интеграция с Unsplash для поиска изображений и SEO-оптимизация.
✔️ Supermaven: конкурента GitHub Copilot от бывшего интерна OpenAi.
Jacob Jackson, один из основателей платформы Tabnine, запустил новый проект - Supermaven. Supermaven, как и Tabnine, использует ИИ для помощи в написании кода, но отличается рядом технических преимуществ, ключевое - окно контекста в 1 миллион токенов.
✔️ Япония создаст суперкомпьютер, в 1000 раз превосходящий по скорости современные аналоги.
Ожидается, что машина будет работать как минимум в 1000 раз быстрее, чем самый быстрый суперкомпьютер в мире на сегодняшний день.
✔️ ИИ используется для анализа плазменных струй при лазерном осаждении (PLD).
📌 Подробнее
@ai_machinelearning_big_data
#news #ai #ml
✔️ Mistral AI: обновление набора моделей по API и Pixtral в Le Chat.
Компания представила масштабное обновление: бесплатный доступ к платформе La Plateforme, обновление цен на всю линейку моделей, новую версию Mistral Small корпоративного класса и бесплатный доступ к модели Pixtral в Le Chat.
La Plateforme – это бессерверная платформа для тонкой настройки и создания моделей Mistral в виде конечных точек API. Теперь она предлагает бесплатный уровень доступа, позволяющий разработчикам экспериментировать, оценивать и создавать прототипы без каких-либо затрат.
Mistral AI также снижает цены доступа по API на всю линейку моделей. Цена на Mistral Nemo снижена на 50%, Mistral Small и Codestral – на 80%, а Mistral Large – на 33%.
Mistral Small v24.09 - последняя версия небольшой модели для задач перевода, реферирования, анализа тональности и других языковых задачи, не требующих полнофункциональных моделей общего назначения.
Mistral Small v24.09 с 22 млрд. параметров занимает место золотой середины между Mistral NeMo 12B и Mistral Large 2.
✔️ Microsoft 365 Copilot: вторая волна обновления, Copilot в офисном пакете.
Microsoft запускает вторую волну обновлений Microsoft 365 Copilot, объединяя веб-интерфейс, рабочие процессы и новый формат страниц "Pages" в единую систему для работы со знаниями.
Copilot Pages, динамическое и постоянное рабочее пространство с ИИ. Pages сохраняет созданный ИИ контент, позволяя редактировать, дополнять и делиться им с коллегами. Пользователи могут совместно работать над страницами с Copilot в режиме реального времени.
Copilot в Excel теперь общедоступен и работает с Python.
Copilot в PowerPoint может создавать презентации на основе идеи, используя Конструктор, использовать фирменные шаблоны компании благодаря функции Brand manager.
Copilot в Teams анализирует транскрипцию встречи, чат, предоставляя полную картину обсуждения и помогая не пропустить ни один вопрос или идею.
Copilot в Outlook с функцией "Расстановка приоритетов во входящих" поможет быстро находить важные сообщения, анализируя их содержание и контекст.
Copilot в Word позволит ссылаться на данные из различных источников, включая веб-страницы, документы Word и PowerPoint, PDF-файлы.
Copilot в OneDrive поможет быстро находить нужную информацию в файлах, обобщать и сравнивать до пяти файлов одновременно, предоставляя краткое и понятное описание деталей и различий.
Copilot agents - ИИ-помощники, разработанные для автоматизации и выполнения бизнес-процессов.
✔️ Google внедрит технологию проверки подлинности изображений.
Google разрабатывает технологию, которая позволит определить, было ли изображение снято камерой, отредактировано в программе типа Photoshop или создано с помощью модели GenAI.
В ближайшие месяцы в результатах поиска Google появится обновленная функция «Об этом изображении», которая позволит пользователям узнать, было ли изображение создано или отредактировано с помощью инструментов ИИ.
✔️ Китай заявил о прорыве в производстве оборудования для выпуска собственных чипов.
Это является важным шагом в преодолении санкций США, направленных на сдерживание полупроводниковых амбиций Пекина.
✔️ Mozilla запускает Solo: бесплатный no-code конструктор сайтов с ИИ.
Среди ключевых особенностей Solo - простая настройка, генерация контента с помощью ИИ, интеграция с Unsplash для поиска изображений и SEO-оптимизация.
✔️ Supermaven: конкурента GitHub Copilot от бывшего интерна OpenAi.
Jacob Jackson, один из основателей платформы Tabnine, запустил новый проект - Supermaven. Supermaven, как и Tabnine, использует ИИ для помощи в написании кода, но отличается рядом технических преимуществ, ключевое - окно контекста в 1 миллион токенов.
✔️ Япония создаст суперкомпьютер, в 1000 раз превосходящий по скорости современные аналоги.
Ожидается, что машина будет работать как минимум в 1000 раз быстрее, чем самый быстрый суперкомпьютер в мире на сегодняшний день.
✔️ ИИ используется для анализа плазменных струй при лазерном осаждении (PLD).
📌 Подробнее
@ai_machinelearning_big_data
#news #ai #ml
40👍19❤5🔥3
Spann3R - уникальный метод плотной трехмерной реконструкции из упорядоченных или неупорядоченных наборов изображений.
Метод основан на концепции пространственной памяти, которая позволяет выполнять инкрементную реконструкцию сцены с помощью прогнозирования карты точек для каждого изображения в единой системе координат.
Spann3R может применяться в реальном времени для онлайн-реконструкции.
Архитектура Spann3R основана на модели DUSt3R с добавлением внешней пространственной памяти. Она включает в себя энкодер ViT, два связанных декодера (целевой и ссылочный), как в DUSt3R, и легковесный энкодер памяти.
Модель обучается на последовательностях из 5 кадров, случайно выбранных из видео, с использованием стратегии сurriculum training, которая регулирует размер окна выборки в процессе обучения. Эта стратегия позволяет Spann3R изучать краткосрочные и долгосрочные зависимости между кадрами.
Для обучения Spann3R использовались наборы данных Habitat, ScanNet, ScanNet++, ARKitScenes, BlendedMVS и Co3D-v2.
Оценка Spann3R проводилась на трех наборах: 7Scenes, NRGBD и DTU. Результаты показывают, что Spann3R демонстрирует конкурентоспособное качество онлайн-реконструкции по сравнению с автономными методами - FrozenRecon и DUSt3R, при этом превосходя их по скорости.
Spann3R достигала частоты кадров в 50 к/с без оптимизации во время оценочного тестирования. Визуализация процесса онлайн-реконструкции демонстрирует способность Spann3R понимать регулярность сцены, модель способна восстанавливать геометрию даже текстурно-однородных областей, например, стен.
⚠️ Перед локальным запуском на тестовых данных, необходимо предварительно загрузить предобученную модель и тестовый набор данных для инференса. Модель положить в папку
./checkpoints , а тестовый набор в ./examples# Clone repository:
git clone https://github.com/HengyiWang/spann3r.git
cd spann3r
# Create conda env:
conda create -n spann3r python=3.9 cmake=3.14.0
conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt
pip install -U -f https://www.open3d.org/docs/latest/getting_started.html open3d
# Compile CUDA kernels for RoPE
cd croco/models/curope/
python setup.py build_ext --inplace
cd ../../../
# Download the DUSt3R checkpoint
wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth
# Run demo:
python demo.py --demo_path ./examples/s00567 --kf_every 10 --vis
@ai_machinelearning_big_data
#AI #ML #3D #Reconstruction #ViT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15❤13🎉8🔥3
Новостной дайджест
✔️ Runway открывает доступ к своей модели генерации видео через API.
Runway анонсировал API, который позволит интегрировать его модели в сторонние платформы, приложения и сервисы. Пока API Runway находится в ограниченном доступе, предлагая только одну модель — Gen-3 Alpha Turbo, более быструю, но менее функциональную версию флагманской модели Runway Gen-3 Alpha. Базовая цена составляет 1 цент за кредит (одна секунда видео стоит пять кредитов). Runway заявляет, что «доверенные стратегические партнеры», включая маркетинговую группу Omnicom, уже используют API.
API Runway имеет требования к использованию. Любые интерфейсы, использующие API, должны «явно отображать» баннер «Powered by Runway» со ссылкой на веб-сайт Runway.
techcrunch.com
✔️ Имплантат для восстановления зрения Neuralink получил одобрение FDA.
Имплантаты Neuralink уже вживлены в мозг двум парализованным пациентам, которые продемонстрировали значительный прогресс в управлении цифровыми технологиями с помощью мысли.
Полученное Neuralink разрешение относится к категории «революционных устройств», этот статус дает компании возможность приоритетного взаимодействия с экспертами FDA на этапе предпродажной проверки. Важно, что получение статуса не является окончательным одобрением FDA для продажи устройства на рынке.
Blindsight, так называется имплантат, работает путем вживления тонкой матрицы из сотен электродов глубоко в мозг пациента, в область, отвечающую за обработку зрительной информации. Blindsight стимулирует зрительную кору микроскопическими импульсами, имитируя сигналы, поступающие от глаз.
На первом этапе технология обеспечит зрение с низким разрешением, сравнимое с графикой старых видеоигр Atari.
inc.com
✔️ CAIS и Scale AI создадут "самый сложный экзамен человечества" для AI.
Некоммерческая организация The Center for AI Safety (CAIS) совместно со Scale AI объявили о создании «Последнего экзамена для человечества» - набора сложнейших вопросов, для оценки истинного уровня интеллекта ИИ. Инициатива возникла на фоне растущих опасений, что ИИ может превзойти человеческий интеллект и потенциально представлять угрозу для человечества.
Проект приглашает к участию экспертов и всех желающих, предлагая им придумать вопросы, которые поставят в тупик современные системы ИИ. Ответы на эти вопросы, собранные от различных моделей ИИ, будут проанализированы и использованы для создания нового стандарта оценки возможностей ИИ.
Авторы наиболее интересных и сложных вопросов будут приглашены стать соавторами научной статьи, посвященной проекту, и получат денежные призы из фонда в 500 000 долларов США. Авторы 50 лучших вопросов получат по 5000 долларов, а авторы следующих 500 лучших вопросов - по 500 долларов.
safe.ai
✔️ BitNet: экстремальное квантование языковых моделей.
Hugging Face успешно применили метод экстремального квантования BitNet к LLM, сократив требования к памяти и вычислениям без ущерба для производительности.
BitNet, разработанный Microsoft Research, представляет собой архитектуру, представляя каждый параметр только тремя значениями: -1, 0 и 1. В результате получается версия модели, которая использует всего 1,58 бит на параметр.
Для интеграции BitNet в архитектуру Transformer представлен новый метод "bitnet". Он заменяет стандартные линейные слои специализированными слоями BitLinear, совместимыми с BitNet. BitLinear квантует веса, используя троичную точность (со значениями -1, 0 и 1), а активации квантуются до 8-битной точности.
BitLinear использует разные реализации для обучения и для логического вывода. Во время обучения используется STE (Straight Through Estimator), который позволяет градиентам проходить через не дифференцируемую операцию округления, аппроксимируя ее градиент как 1. Таким образом, веса обновляются с помощью стандартных методов оптимизации на основе градиента.
Во время логического вывода веса просто квантуются до троичных значений без повторного масштабирования, а это ощутимо повышает скорость вывода.
huggingface.co
@ai_machinelearning_big_data
#news #ai #ml
Runway анонсировал API, который позволит интегрировать его модели в сторонние платформы, приложения и сервисы. Пока API Runway находится в ограниченном доступе, предлагая только одну модель — Gen-3 Alpha Turbo, более быструю, но менее функциональную версию флагманской модели Runway Gen-3 Alpha. Базовая цена составляет 1 цент за кредит (одна секунда видео стоит пять кредитов). Runway заявляет, что «доверенные стратегические партнеры», включая маркетинговую группу Omnicom, уже используют API.
API Runway имеет требования к использованию. Любые интерфейсы, использующие API, должны «явно отображать» баннер «Powered by Runway» со ссылкой на веб-сайт Runway.
techcrunch.com
Имплантаты Neuralink уже вживлены в мозг двум парализованным пациентам, которые продемонстрировали значительный прогресс в управлении цифровыми технологиями с помощью мысли.
Полученное Neuralink разрешение относится к категории «революционных устройств», этот статус дает компании возможность приоритетного взаимодействия с экспертами FDA на этапе предпродажной проверки. Важно, что получение статуса не является окончательным одобрением FDA для продажи устройства на рынке.
Blindsight, так называется имплантат, работает путем вживления тонкой матрицы из сотен электродов глубоко в мозг пациента, в область, отвечающую за обработку зрительной информации. Blindsight стимулирует зрительную кору микроскопическими импульсами, имитируя сигналы, поступающие от глаз.
На первом этапе технология обеспечит зрение с низким разрешением, сравнимое с графикой старых видеоигр Atari.
inc.com
Некоммерческая организация The Center for AI Safety (CAIS) совместно со Scale AI объявили о создании «Последнего экзамена для человечества» - набора сложнейших вопросов, для оценки истинного уровня интеллекта ИИ. Инициатива возникла на фоне растущих опасений, что ИИ может превзойти человеческий интеллект и потенциально представлять угрозу для человечества.
Проект приглашает к участию экспертов и всех желающих, предлагая им придумать вопросы, которые поставят в тупик современные системы ИИ. Ответы на эти вопросы, собранные от различных моделей ИИ, будут проанализированы и использованы для создания нового стандарта оценки возможностей ИИ.
Авторы наиболее интересных и сложных вопросов будут приглашены стать соавторами научной статьи, посвященной проекту, и получат денежные призы из фонда в 500 000 долларов США. Авторы 50 лучших вопросов получат по 5000 долларов, а авторы следующих 500 лучших вопросов - по 500 долларов.
safe.ai
Hugging Face успешно применили метод экстремального квантования BitNet к LLM, сократив требования к памяти и вычислениям без ущерба для производительности.
BitNet, разработанный Microsoft Research, представляет собой архитектуру, представляя каждый параметр только тремя значениями: -1, 0 и 1. В результате получается версия модели, которая использует всего 1,58 бит на параметр.
Для интеграции BitNet в архитектуру Transformer представлен новый метод "bitnet". Он заменяет стандартные линейные слои специализированными слоями BitLinear, совместимыми с BitNet. BitLinear квантует веса, используя троичную точность (со значениями -1, 0 и 1), а активации квантуются до 8-битной точности.
BitLinear использует разные реализации для обучения и для логического вывода. Во время обучения используется STE (Straight Through Estimator), который позволяет градиентам проходить через не дифференцируемую операцию округления, аппроксимируя ее градиент как 1. Таким образом, веса обновляются с помощью стандартных методов оптимизации на основе градиента.
Во время логического вывода веса просто квантуются до троичных значений без повторного масштабирования, а это ощутимо повышает скорость вывода.
huggingface.co
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥8❤5🥰2😁1
RAG-системы - это комбинация информационного поиска и генеративных моделей, целью которая предоставляет точные и контекстуально релевантные ответы на запросы пользователя.
В репозитории собран большой и регулярно обновляемый набор инструментов, документации и обучающих материалов, предназначенных для теоретического изучения и практического применения для желающих расширить свои знания и навыки в изучении возможностей RAG:
Базовые методы RAG:
Инженерия запросов:
Обогащение контекста и содержания:
Методы поиска:
Итеративные и адаптивные методы:
Интерпретируемость:
Архитектуры:
# Клонируйте репозиторий
git clone https://github.com/NirDiamant/RAG_Techniques.git
#Перейдите к интересующей вас технике
cd all_rag_techniques/technique-name
#Следуйте подробному руководству по применению в каталоге каждой техники.
@ai_machinelearning_big_data
#AI #ML #RAG #AwesomeRAG #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31❤7🔥4🎉1
Команда разработки Qwen (Alibaba Group) опубликовала большой релиз нового поколения моделей - Qwen2.5, специализированные модели: Qwen2.5-Coder, Qwen2.5-Math, их инструктивные и квантованные версии, анонсированы закрытые Qwen-Plus и Qwen-Turbo.
Вместе с релизом нового поколения 2.5 в отрытый доступ опубликована Qwen2-VL-72B-Instruct предыдущего поколения.
В дополнение к традиционным вариантам с 0,5-1,5-7-72 млрд параметров, Qwen2.5 предлагает две новые модели среднего размера 14 млрд и 32 млрд параметров и компактную модель 3 млрд параметров.
Qwen2.5 обучались на увеличенном и улучшенном наборе данных размером в 18 трлн токенов.
Значительно расширены знания моделей: возможности в области программирования,
усовершенствованы математические способности Qwen2.5, повышено соответствие ответов модели предпочтениям человека: следование инструкциям, генерация длинных текстов (до 8 тыс. токенов), понимание структурированных данных и генерация структурированных выводов (в частности, JSON).
Список моделей:
В дополнение к этим моделям открыт доступ по API для флагманских моделей: Qwen-Plus и Qwen-Turbo через Model Studio.
Qwen2.5-Coder доступна в трех размерах: 1,5 млрд, 7 млрд и 32 млрд параметров (последняя появится в ближайшее время). Обновление состоит из двух основных улучшений: больше объем обучающих данных и расширение возможностей программирования в общих задачах и в математике.
Модели обучались на массиве данных объемом 5,5 триллиона токенов, включающем исходный код, данные для сопоставления текста и кода и синтетические данные.
Qwen2.5-Coder поддерживает до 128 тысяч токенов контекста, знает 92 языка программирования и выполняет операции по генерации кода, автодополнению и исправлению кода.
Qwen2.5-Coder-Instruct имеет способность к обобщению, знает более 40 языков программирования, справляется с задачами, связанными с логическим мышлением в коде, и показывает высокие результаты в задачах, связанных с математическим мышлением.
Список моделей:
Qwen2.5-Math обучались на корпусе математических данных Qwen Math Corpus v2, который содержит более 1 трлн. токенов.
Помимо базовых моделей, серия Qwen2.5-Math включает в себя инструктивные модели: Qwen2.5-Math-Instruct и модель математического вознаграждения, Qwen2.5-Math-RM-72B.
Qwen2.5-Math-Instruct обучалась с использованием данных CoT и TIR на китайском и английском языках, а также данных SFT, созданных с использованием Qwen2.5-Math-RM-72B.
Список моделей:
@ai_machinelearning_big_data
#AI #ML #LLM #Qwen
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤23👍9🔥7🤩3