This media is not supported in your browser
VIEW IN TELEGRAM
⚡️ Мощная архитектура 14 млрд параметров
Модель способна детально прорабатывать сцены и динамику, генерируя высококачественные видео, где каждая деталь выглядит реалистично.
Модель поддерживает:
- Text-to-Video: генерация видео по текстовым запросам.
Image-to-Video: преобразование статических изображений в анимированные видеоролики.
- Видео-редактирование: внесение изменений в уже существующие видео.
- Text-to-Image: создание изображений на основе текста.
- Video-to-Audio: синтез аудио, соответствующих содержанию видео.
Такая универсальность делает модель полезной для широкого спектра приложений.
Использование видео VAE (вариационного автоэнкодера)
В основе модели лежит мощный видео VAE, который эффективно кодирует и декодирует видеоконтент. Это позволяет:
- Обрабатывать видео высокого разрешения (до 1080p).
- Сохранять временную динамику и последовательность кадров.
- Обеспечивать плавное и согласованное воспроизведение движения.
- Оптимизация для потребительских видеокарт
Несмотря на свои масштабы, модель оптимизирована для работы на современных GPU.
Например, версия T2V-1.3B требует всего 8,19 ГБпамяти и способна генерировать 5-секундное видео с разрешением 480p примерно за 4 минуты на RTX 4090 без применения дополнительных оптимизаций.
Как работает:
▪Ввод данных: Пользователь может задать текстовое описание, предоставить изображение или даже видео, в зависимости от задачи.
▪Кодирование: Виде VAE преобразует входные данные в компактное представление, сохраняя при этом критически важную информацию о сцене и динамике.
▪Генерация: На основе этого представления и с использованием огромного количества параметров модель генерирует новый видеоряд, который соответствует заданному описанию или образцу.
▪Декодирование: Затем VAE декодирует это представление обратно в полноценное видео, где соблюдаются все временные и визуальные детали.
Таким образом, Wan2.1-T2V-14B выделяется своей способностью не только создавать качественные видео по текстовому описанию, но и решать множество сопутствующих задач (от редактирования до генерации аудио), оставаясь при этом оптимизированной для работы на доступном оборудовании.
Это делает её одной из самых перспективных разработок в области генеративного видео на сегодняшний день.
@ai_machinelearning_big_data
#TexttoVideo #ai #ml #video #wanai
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥63👍32❤7
Команда StepFun AI выпустила Step-Video-TI2V модель для генерации видео (до 102 кадров), производительностью SOTA.
Принимает на вход текстовые описания и изображенияъ 🖼️ + ✍️ = 🎬
На бенчмарке VBench-I2V, моделька показывает лучшие результаты по сравнению с другими современными открытыми моделями для генерации видео из изображения и текста, а также лидирует в публичном рейтинге.
Ключевые особенности:
▪ Контроль движения: Модель предлагает достойный баланс между стабильностью движения и гибкостью, позволяя управлять динамикой в кадре.
▪ Разнообразные движения камеры: Поддерживается имитация различных движений виртуальной камеры для создания более кинематографичных эффектов.
▪ Мастер аниме-стиля: Step-Video-TI2V особенно преуспевает в генерации видео в стиле аниме, открывая новые возможности для фанатов и создателей контента! ✨
▪ Поддержка разных разрешений: Модель может генерировать видео в нескольких вариантах размеров.
@ai_machinelearning_big_data
#AI #VideoGeneration #TextToVideo #ImageToVideo #GenerativeAI #MachineLearning #StepFunAI #ИИ #ГенерацияВидео #Нейросети #Аниме #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤11🔥5🤔2🌚1
This media is not supported in your browser
VIEW IN TELEGRAM
Модель поддерживает:
- Текст в видео (Text-to-Video)
- Оживлять картинку (Image-to-Video)
- Продолжать существующее видео (Video Continuation)
Всё в одном фреймворке, без переключения между разными моделями.
🎬 Главное преимущество модели - способность генерировать длинные видео (минуты) без потери качества и цветового дрейфа, что до сих пор остаётся слабым местом большинства аналогов.
Еще из интересного, модель позволяет создавать видео в разрешении 720p при 30 кадрах/с.
🏆 LongCat-Video конкурирует с лучшими open-source решениями и даже некоторыми коммерческими моделями, особенно в согласованности текста и изображения.
Самое приятное - полный open-source под лицензией MIT, можно использовать как в исследованиях, так и в коммерческих проектах.
▪GitHub: https://github.com/meituan-longcat/LongCat-Video
▪Hugging Face: https://huggingface.co/meituan-longcat/LongCat-Video
▪Сайт проекта: https://meituan-longcat.github.io/LongCat-Video/
@ai_machinelearning_big_data
#LongCatVideo #TextToVideo #ImageToVideo #VideoContinuation #OpenSource #AI #GenerativeAI #VideoGeneration
Please open Telegram to view this post
VIEW IN TELEGRAM
👍69❤35🔥16😇4❤🔥2🤗2💔1