Это подборка интерактивных ноутбуков, демонстрирующих возможности Qwen3-VL - как при локальном запуске, так и через API.
Внутри - десятки реальных примеров с разборами:
▪ Работа с изображениями и рассуждение по ним
▪ Агент для взаимодействия с интерфейсами (Computer-Use Agent)
▪ Мультимодальное программирование
▪ Распознавание объектов и сцен (Omni Recognition)
▪ Продвинутое извлечение данных из документов
▪ Точное определение объектов на изображении
▪ OCR и извлечение ключевой информации
▪ 3D-анализ и привязка объектов
▪ Понимание длинных документов
▪ Пространственное рассуждение
▪ Мобильный агент
▪ Анализ и понимание видео
@ai_machinelearning_big_data
#Qwen #Qwen3VL #AI #VisionLanguage #Multimodal #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤81🔥26👍22💘1
🔍 Qwen3-VL-2B-Thinking — новая маленькая мультимодальная модель, заточенная под рассуждения
Компактная версия семейства Qwen3-VL, ориентированная на глубокое мышление, аналитику и агентные применения.
В линейке Qwen-VL предусмотрены два ключевых режима:
- *Instruct* — для диалогов и инструкций,
- *Thinking* — для логических рассуждений, кода и комплексных задач.
💡 Особенности
- Архитектура поддерживает мультимодальность: модель понимает текст и изображения, способна анализировать контент и выстраивать причинно-следственные связи.
- Оптимизирована для reasoning-задач, где важна не генерация текста, а последовательное мышление и вывод.
- Благодаря размеру в 2B параметров, модель легко разворачивается на локальных GPU и в облачных окружениях.
- Поддерживает tool calling и интеграцию в агентные фреймворки.
Qwen3-VL-2B-Thinking - отличная модель при минимальных ресурсах.
👉 https://huggingface.co/Qwen/Qwen3-VL-2B-Thinking
@ai_machinelearning_big_data
#Qwen3VL #Qwen #Reasoning #AI #Multimodal #OpenSource
Компактная версия семейства Qwen3-VL, ориентированная на глубокое мышление, аналитику и агентные применения.
В линейке Qwen-VL предусмотрены два ключевых режима:
- *Instruct* — для диалогов и инструкций,
- *Thinking* — для логических рассуждений, кода и комплексных задач.
💡 Особенности
- Архитектура поддерживает мультимодальность: модель понимает текст и изображения, способна анализировать контент и выстраивать причинно-следственные связи.
- Оптимизирована для reasoning-задач, где важна не генерация текста, а последовательное мышление и вывод.
- Благодаря размеру в 2B параметров, модель легко разворачивается на локальных GPU и в облачных окружениях.
- Поддерживает tool calling и интеграцию в агентные фреймворки.
Qwen3-VL-2B-Thinking - отличная модель при минимальных ресурсах.
👉 https://huggingface.co/Qwen/Qwen3-VL-2B-Thinking
@ai_machinelearning_big_data
#Qwen3VL #Qwen #Reasoning #AI #Multimodal #OpenSource
👍225❤61🔥47😎11🎉9👏7🤔7🥰6🤩5🤗3🦄3