360K subscribers
4.29K photos
799 videos
17 files
4.76K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
✔️ OpenAI выложили в открытый доступ Customer Service Agent Demo

Теперь у всех есть пример, как сделать продакшн-агентов с маршрутизацией, безопасностью и интерфейсом — от запроса до ответа.

Что это такое:

• Многоагентная система для поддержки клиентов (например: бронирование мест, отмена рейса, статус рейса, FAQ)
• Демка написана на Python + Next.js
• Использует OpenAI Agents SDK
• Встроены guardrails: защита от неуместных запросов и попыток обхода правил
• UI: внутри готовый интерфейс чат-бота

Как работает:

1. Пользователь пишет запрос
2. Система выбирает подходящего агента (например, `SeatBooking`)
3. Агент отвечает или передаёт диалог другому
4. Есть fallback на человека, если нужно

Как запустить:


# Backend
cd python-backend
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
uvicorn api:app --reload --port 8000

# Frontend
cd ui
npm install
npm run dev


Далее открываем: http://localhost:3000

Особенности
• MIT-лицензия — можно адаптировать под свои задачи
• Удобно расширять: добавлять новых агентов, инструменты, правила
• Простой код, всё задокументировано
• Рабочий кейс от OpenAI

🔗 GitHub: github.com/openai/openai-cs-agents-demo

Если вы хотите собрать систему из агентов — это отличная точка старта.

@ai_machinelearning_big_data

#chatgpt #openai #aiagents #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍69🔥2821🤔5🥰3❤‍🔥2🤬1🤝1
🚨 Цукерберг переманил трёх топовых исследователей из OpenAI для своей команды по суперинтеллекту

• Лукас Бейер
• Александр Колесников
• Сяохуа Чжай

Все трое работали в цюрихском офисе OpenAI.

💰 По слухам, предложение в ~$100M оказалось убедительнее философии OpenAI.

Самое забавное, что всего несколько дней назад Сэм Альтман заявлял:

Цукерберг пытался нанять многих, но лучшие из наших пока не ушли.

Похоже, это уже не так.

📉 Ранее компания приобрела 49% долю в Scale AI за $14,3 млрд.

В команду разработчиков переманили Александра Ванга — 28-летнего CEO Scale AI — для работы над проектами в области "суперинтеллекта".

Это часть агрессивной стратегии компании Цукерберга по быстрому наращиванию лидерства в гонке за AGI.

📌 Новость

@ai_machinelearning_big_data

#openai #news #ai #ml
🔥11131👍14🥰7😁6👌3🦄3🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Ilia Sutskever, сооснователь OpenAI, призывает пересмотреть саму суть того, как мы строим ИИ.

Он считает, что будущие дата-центры с суперинтеллектом — это новая форма нечеловеческой жизни. И уже сейчас важно заложить в неё доброжелательное, тёплое отношение к людям.

> “Мы хотим, чтобы эти системы испытывали позитивные чувства к человечеству.”

Суцкевер подчёркивает: как мы относимся к ИИ сейчас — так он будет относиться к нам в будущем. Речь не только о правилах или ограничениях. Речь о формировании петли доверия и взаимного уважения между людьми и машинами.

🤝 Это новый вектор развития: не просто техническое выравнивание, а создание ИИ, который *по-настоящему заботится*.

🔔 В эпоху, где ИИ становится всё мощнее, этот посыл особенно важен. Идущие на шаг вперёд разработчики должны думать не только о безопасности, но и о душевной этике будущего интеллекта.

@ai_machinelearning_big_data

#ml #ai #openai #opinion
🥰139👍66🤣3029😁20💯12🤨9🦄8🤬6🐳5🤓3
🖥Бывший инженер OpenAI опубликовал редкий взгляд изнутри: что значит работать в самой обсуждаемой AI-компании мира.

Он провёл 14 месяцев в applied-команде, разрабатывая Codex — кодинг-агента, который за 7 недель прошёл путь от первой строки к публичному запуску. В ночь перед запуском они сидели до 4 утра, а утром уже нажимали на кнопку.

Он работал на Python, жег огромные GPU-бюджеты, спринтил с командой почти без выходных.

Автор уволился,чтобы сделать свой проект, но называет этот год самым интенсивным и полезным в карьере.

🚀 Рост компании
За год OpenAI выросла с 1000 до 3000 человек. Внутренние процессы постоянно перестраиваются, для разрабов Slack стал полноценным «офисом», а почта почти исчезла из работы.

В командах идеи идут снизу вверх — и кто первым закомитит свой код, тот и задаёт стандарт. Главная метрика успеха — не презентации, а работающий код.

Из-за огромного внимания общества и прессы компания крайне аккуратно делится информацией. Многое не анонсируется даже внутри.

🖥 В OpenAI Python везде:
Codex - это огромный монорепозиторий почти целиком сотоязий из Python кода. Все сервисы поднимаются через FastAPI, а данные проходят через Pydantic — это даёт простую валидацию и ускоряет разработку. В проекте есть немного Go и Rust в основном в сетевых компонентах, но это редкие исключения.

🔜 Кодинг на пределе
Codex сделали крошечной командой за 7 недель. Автор вспоминает бессонные ночи, утренние подъёмы и выходные в офисе. Команда была сильной, многие ушли от Цукерберга к Сэме— и это чувствуется по уровню инфраструктуры.

OpenAI —выгладит как странный гибрид: он подобен научному центру в стиле Лос-Аламоса, который случайно сделал самый хайповый продукт десятилетия. . Руководство комании активно отвечает в Slack, 600 000+ pull request'ов за 53 дня после запуска Codex!

OpenAI — это не просто «компания создавашая GPT». Это лаборатория, где безумная скорость сочетается с реальным и крутым продуктом. Они не боятся выкатывать новые фичи, не скрывают свой хаос и делают очень много интересного. Не идеальная система, но там правда делают вещи.

👉Полную статью можно почитать -здесь

@ai_machinelearning_big_data


#openai #ai #ml #llm #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥135👍5142🙈7😁3🫡3🤷‍♂2🍾1
🚨 Oracle официально согласилась поставить OpenAI 2 МИЛЛИОНА AI-чипов

Что это значит?

OpenAI строит новый дата-центр под *чудовищную* нагрузку:
— 4.5 ГВт вычислений (это больше, чем у некоторых стран)
— стоимость — $30 млрд в год 😳

💸 SoftBank? Больше не при делах:
— «SoftBank не участвует в финансировании»
— переговоры по деньгам сорвались ещё в январе

Oracle теперь главный поставщик чипов для OpenAI.

4,5 гигаватта — этого достаточно, чтобы обеспечить электричеством 3,4 миллиона домов.
OpenAI буквально строит инфраструктуру с потреблением энергии на уровне города — только ради обучения ИИ.

🔜 Новость


@ai_machinelearning_big_data


#openai #news #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
85🔥50🤔25👍15👀11🤬8🥰2🍓2👨‍💻2🤣1
📈 OpenAI и Anthropic показывают взрывной рост прибыли в 2025.

OpenAI удвоили ARR* за полгода: $6B → $12B
— Anthropic выросли в 5 раз за 7 месяцев: $1B → $5B

*ARR (Annual Recurring Revenue) — это годовой повторяющийся доход, один из ключевых финансовых показателей для компаний, особенно в сфере подписок (например, SaaS).


🧻 Интересное распределение выручки:
OpenAI лидирует в подписках (частные и корпоративные пользователи)
— Anthropic чуть впереди по доходу с API: $3.1B против $2.9B
— Почти половина API-выручки Anthropic поступает всего от двух клиентов: Cursor и GitHub

🧑‍💻 ChatGPT обрабатывает более 3 миллиардов сообщений в день — и рост продолжается ускоряться.
Если год назад прирост пользователей составлял 2,5× в год, то теперь он достиг 4×.

Code Claude же даёт $400M ARR — в 2 раза больше, чем всего несколько недель назад.

Сегодня почти все ассистенты по умолчанию используют Claude 4 Sonnet.

Но если GPT‑5 перехватит лидерство — и те же Cursor или Copilot перейдут к OpenAI — расклад может быстро поменяться.

@ai_machinelearning_big_data


#OpenAI @Anthropic #ml #llm #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62🔥2717🦄4🤣3🤔2🗿2👨‍💻1
🔥 GPT-OSS — открытые модели с продвинутым ризонингом от OpenAI

🧠 Представлено два варианта:
GPT-OSS-120B — 117B параметров, запускается на одной H100 (80GB)
GPT-OSS-20B — 21B параметров, работает на 16GB GPU

💡 Оба варианта — MoE-модели (Mixture of Experts) с 4-битной квантизацией (MXFP4)

✔️ Особенности:
• Архитектура Token-choice MoE с SwiGLU
• Контекст до 128K токенов с RoPE
• Модель заточена на CoT (chain-of-thought)
• Поддержка instruction-following и tool-use
• Совместима с transformers, vLLM, llama.cpp, ollama
• Используется тот же токенизатор, что и в GPT-4o

Младшая модель может запускаться даже на локальном железе!

🏴‍☠️Лицензирование: Apache 2.0

https://github.com/huggingface/transformers/releases/tag/v4.55.0

🚀 Попробовать можно тут: https://www.gpt-oss.com/

💥 Официальный релиз: http://openai.com/open-models

@ai_machinelearning_big_data


#openai #opensource #chatgpt
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥87👍3927🍾7👨‍💻3
🖥 gpt-oss работает на специальном формате промптов — Harmony, и без него модель просто не будет выдавать корректные ответы.

Зачем нужен Harmony?
Этот формат нужен для:
🧠 генерации chain of thought рассуждений
🔧 корректного вызова функций и использования инструментов
📦 вывода в разные каналы: обычный ответ, reasoning, tool call
🗂️ поддержки tool namespaces и иерархических инструкций

💡 Harmony имитирует OpenAI Responses API, так что если вы с ним работали — будет легко освоиться.

👉 Если вы используете gpt-oss через HuggingFace, Ollama или vLLM, волноваться не нужно.

Но если строите свой пайплайн — обязательно изучите гайд по Harmony.

Без него модель просто не будет работать как надо.


pip install openai-harmony
# or if you are using uv
uv pip install openai-harmony

@ai_machinelearning_big_data


#gptOSS #Harmony #OpenAI #LLM #PromptEngineering
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6228🔥11🦄3👨‍💻2😁1
🚀 OpenAI **gpt-oss** с ультрадлинным контекстом!

Unsloth выпустили Flex Attention, который даёт до 61K контекста для gpt-oss bf16 при обучении на GPU с 80GB.

📊 Что это значит:
- 8× больше контекста
- потребляет на 50% меньше VRAM
- 1.5× быстрее по сравнению с альтернативами (включая FA3)

Для BF16 LoRA теперь можно тренировать с ~60K контекстом на одной H100 80GB.

🔗 Подробнее: https://docs.unsloth.ai/basics/long-context-gpt-oss-training

@ai_machinelearning_big_data


#Unsloth #OpenAI #gptoss #chatgpt
👍5219🔥12💅4
📌Почему языковые модели галлюцинируют.

OpenAI опубликовали исследование о причинах галлюцинации LLM.

Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.

Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.

🟡Все начинается еще на претрейне.

Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.

В работе вводится понятие singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле.

Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.

🟡Эксперименты это подтверждают.

Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты: 03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью).

В другом тесте, где нужно было сосчитать количество букв D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7.

При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний. Кто бы сомневался.

🟡Почему галлюцинации не исчезают после пост-тренинга и RLHF?

Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.

Эту гипотезу подтвердили анализом популярных оценочных наборов.

В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.

🟡Что делать инженерам.

OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.

Еще рекомендуют включают мониторинг singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.

🔜 Читать статью полностью


@ai_machinelearning_big_data

#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
80👍34🔥14👏3🥰1😁1💘1