This media is not supported in your browser
    VIEW IN TELEGRAM
  📊 На SimpleQA (agentic / MCP) — Jan-nano набирает 80.7.
Это очень серьёзный результат для модели такого размера!
Модель работает через Jan — open-source альтернативу ChatGPT, которая запускается локально.
Она заточена и оптимизирована для интеграции с Model Context Protocol (MCP).
🔍 Jan-nano — ещё один пример того, как компактные модели могут конкурировать с большими моделями благодаря обучению и агентной архитектуре.
▪ HF: https://huggingface.co/Menlo/Jan-nano
@ai_machinelearning_big_data
#LLM #JanNano #MCP #OpenSourceAI
Please open Telegram to view this post
    VIEW IN TELEGRAM
  2👍94❤25🔥13😈5👏2🤣1
  Ключевые особенности:
- лёгкая и быстрая, всего 2.6B параметров
- построена на архитектуре v2 (short convs + group query attention)
- обучена на 10 трлн токенов, поддерживает контекст до 32k
LFM2-2.6B - компактная, но мощная моделька для широкого спектра задач.
@ai_machinelearning_big_data
#AI #LLM #LFM2 #OpenSourceAI #Multilingual
Please open Telegram to view this post
    VIEW IN TELEGRAM
  ❤51👍19🔥12👌2🥱2💘2
  This media is not supported in your browser
    VIEW IN TELEGRAM
  Модель ростроенная на базе open-source Hunyuan3D 2.1 и называемая «ControlNet для 3D», система решает проблемы кривых генераций и искажённой геометрии, интегрируя до четырёх условий контроля.
Две ключевые инновации:
- Лёгкий унифицированный энкодер управления для эффективного мультимодального фьюжна
- Стратегия прогрессивного обучения по сложности, повышающая устойчивость модели
Возможности:
- Управление по одному изображению и наброску позволяет точно задавать позы для анимаций и аватаров
- Использование облака точек (полного или построенного по глубине): убирает визуальную неопределённость и обеспечивает реалистичную геометрию
- Контроль через bounding box: задаёт пропорции объекта (длину, ширину и высоту) в соответствии с дизайном
- Voxel-контроль: формирует топологию объекта, что удобно и для инженерных, и для творческих сценариев
Tencent дропнули код и веса.
@ai_machinelearning_big_data
#3DGenAI #TencentHunyuan #OpenSourceAI
Please open Telegram to view this post
    VIEW IN TELEGRAM
  🔥48❤25👍10🥰3💘2
  🔥 Nanochat D32 : микромодель Карпаты за $1000, которая реально работает
Карпаты написал, что завершил обучение Nanochat D32, обученной за 33 часа при бюджете $1000 (вместо $100).
Результаты - удивительно хорошие для такой «крошки»:
- 📈 CORE score: 0.31 (выше, чем у GPT-2 — ~0.26)
- 🧮 GSM8K: с 8% до 20%
- 🚀 Рост виден на всех этапах - pretraining, SFT и RL
Карпати пишет:
💡 Факты:
- Nanochat тренируется с нуля
- Самая маленькая модель Nanochat содержит примерно в тысячу раз меньше параметров, чем GPT-3.
- Обнолвенный скрипт
📎 Подробности и отчёт:
https://github.com/karpathy/nanochat/discussions/8
Карпати уже тестирует веб-чат с моделью (ссылку не публикует, чтобы не обвалили сервер).
Дальше -оптимизация и возможно, переход к следующему уровню масштабирования.
#AI #LLM #Nanochat #Karpathy #AIresearch #OpenSourceAI
Карпаты написал, что завершил обучение Nanochat D32, обученной за 33 часа при бюджете $1000 (вместо $100).
Результаты - удивительно хорошие для такой «крошки»:
- 📈 CORE score: 0.31 (выше, чем у GPT-2 — ~0.26)
- 🧮 GSM8K: с 8% до 20%
- 🚀 Рост виден на всех этапах - pretraining, SFT и RL
Карпати пишет:
> «Не ждите от микромоделей чудес. Они обходятся $100–$1000, а не миллиарды долларов, как у крупных лабораторий.
> Разговаривать с моделью - как с ребёнком из детсада: они милые, ошибаются, путаются, галлюцинируют, но это весело.»
💡 Факты:
- Nanochat тренируется с нуля
- Самая маленькая модель Nanochat содержит примерно в тысячу раз меньше параметров, чем GPT-3.
- Обнолвенный скрипт
run1000.sh уже доступен в репозитории  📎 Подробности и отчёт:
https://github.com/karpathy/nanochat/discussions/8
Карпати уже тестирует веб-чат с моделью (ссылку не публикует, чтобы не обвалили сервер).
Дальше -оптимизация и возможно, переход к следующему уровню масштабирования.
#AI #LLM #Nanochat #Karpathy #AIresearch #OpenSourceAI
🔥81❤24👍13😁2👌1👻1💘1
  ⚡️ LongCat-Flash-Omni - открытая 560B MoE-модель (27B активных параметров), которая умеет вести живой диалог в реальном времени, слышать, видеть и отвечать голосом.
Ключевые фишки:
-модель разговаривает и видит собеседника, реагирует на беседу в реальном времени
- 128K контекст
- продвинутая MoE-архитектура: высокое качество при меньших затратах (27B активных параметров из 560B)
- Полгный open-source
По тестам:
- лидер на OmniBench, DailyOmni
- хорошие показатели на ASR (распознавании речи), DocVQA, RefCOCO
- обходит лучше Qwen3-Omni Instruct
- и очень близка к Gemini-2.5-Flash, но это все таки*открытая* модель
Открытая мультимодальная модель, которую можно запускать локально, хороший вариант для голосовых ассистентов.
🤖 Model: https://modelscope.cn/models/meituan-longcat/LongCat-Flash-Omni
🌐 Demo: https://longcat.ai
📄 Full technical report & code:
https://github.com/meituan-longcat/LongCat-Flash-Omni
@ai_machinelearning_big_data
#AI #OpenSourceAI #Multimodal #MoE #LLM #GenAI
Ключевые фишки:
-модель разговаривает и видит собеседника, реагирует на беседу в реальном времени
- 128K контекст
- продвинутая MoE-архитектура: высокое качество при меньших затратах (27B активных параметров из 560B)
- Полгный open-source
По тестам:
- лидер на OmniBench, DailyOmni
- хорошие показатели на ASR (распознавании речи), DocVQA, RefCOCO
- обходит лучше Qwen3-Omni Instruct
- и очень близка к Gemini-2.5-Flash, но это все таки*открытая* модель
Открытая мультимодальная модель, которую можно запускать локально, хороший вариант для голосовых ассистентов.
🤖 Model: https://modelscope.cn/models/meituan-longcat/LongCat-Flash-Omni
🌐 Demo: https://longcat.ai
📄 Full technical report & code:
https://github.com/meituan-longcat/LongCat-Flash-Omni
@ai_machinelearning_big_data
#AI #OpenSourceAI #Multimodal #MoE #LLM #GenAI
🔥54❤35👍22