330K subscribers
4.17K photos
770 videos
17 files
4.69K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
✔️ Google представила Gemma 3n — лёгкую и быструю AI-модель для работы на девайсах

Google выпустила Gemma 3n — это новая версия модели, которая запускается локально на мобильных устройствах.

Gemma 3n может работа локально на устройстве с 2 ГБ оперативной памяти!

➡️ Особенности:

• Работает в 1.5 раза быстрее, чем предыдущая Gemma 3 4B
• Поддерживает работу без интернета — всё локально и безопасно
• Умеет понимать текст, речь и изображения
• Можно использовать даже на устройствах с 2–3 ГБ RAM
• Поддерживает мгожетсво языков,

💡 Gemma 3n использует гибкую архитектуру (MatFormer), которая может "переключаться" между лёгким и полным режимом (2B и 4B параметров) — модель подстраивается под задачу, не перегружая устройство.

🔧 Как начать пользоваться:

• Через Google AI Studio — работает прямо в браузере
• Или через SDK Google AI Edge — интеграция на Android, Chromebook и другие устройства

📊 Где это применимо:

• Голосовые ассистенты
• Приложения с ИИ, которые работают без интернета
• Переводчики, чат-боты, анализ изображений на телефоне

➡️Релиз: https://developers.googleblog.com/en/introducing-gemma-3n/
➡️ Документация: https://ai.google.dev/gemma/docs/gemma-3n#parameters

#Gemma #Google #mobile #МультимодальныйИИ #МобильныйИИ #edgedevices
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍110🔥5132❤‍🔥1🎄1
✔️ Google представила превью обновлённой модели Gemini 2.5 0605

Новая версия уже доступна для тестирования и показывает заметные улучшения в:

🧠 кодинге
📊 логическом выводе
🔬 задачах по науке и математике

Pro-версия показывает прирост на 24 пункта Elo, удерживая лидерство на lmarena_ai с результатом 1470.

💬 Также улучшены стиль и структура ответов — Google учла фидбек пользователей.

Gemini обошёл Opus 4 в тестах на веб-разработку (WebDev Arena).

💰 Цены
— до 200 000 токенов: $1.25 вход / $10 выход (за 1M токенов)
— свыше 200 000 токенов: $2.50 вход / $15 выход (за 1M токенов)

🔧Модель достпна уже сейчас в:
- AI Studio
- Vertex AI
- Gemini app

https://blog.google/products/gemini/gemini-2-5-pro-latest-preview/

@ai_machinelearning_big_data

#Gemini #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5829🔥11🥰5
🌟 Google опенсорснул стек Deep Search.

Google выложил в открытый доступ на Github фуллстек-проект, который превращает пользовательские запросы в глубокие исследования с помощью Gemini. Его главная задача - находить информацию в интернете, анализировать ее и выдавать ответы с ссылками на источники, используя комбинацию React-интерфейса и бэкенда на базе LangGraph.

Проект включает в себя все необходимое: и фронтенд, и бэкенд.

🟢Фронтенд на React и он про взаимодействие с пользователем (принимает запросы и отображает результаты.)

🟢Бэкенд, на LangGraph, управляет «мозгом» системы: здесь работает агент, который генерирует поисковые запросы, анализирует результаты и решает, нужно ли уточнять данные.

Внутри бэкенда есть модуль, который отвечает за запуск цикла: сначала Gemini создает начальные запросы, затем система ищет информацию через API Google Search, оценивает, хватает ли данных, и при необходимости повторяет процесс.

Важная часть пайплайна — рефлексия. После каждого поиска агент проверяет, закрыты ли все «пробелы» в знаниях. Если информации недостаточно, он генерирует новые вопросы и повторяет цикл, пока не соберёт достаточно данных для ответа.

Проект адаптирован к продакшену, в нем используются Redis (для стриминга результатов в реальном времени) и PostgreSQL (для хранения истории диалогов и управления задачами). Это позволяет системе не терять прогресс даже при перезагрузках.

⚠️ Для практического использования потребуются API-ключи к Google Gemini и LangSmith.


📌Лицензирование: Apache 2.0 License.


🖥 GitHub


@ai_machinelearning_big_data

#AI #ML #DeepSearch #Google #Gemini #LangGraph
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
83👍43🔥22😁8
🤖 Gemini Robotics: автономный AI для роботов

Google представили Gemini Robotics On-Device — первую модель, объединяющую зрение, язык и действия, которая работает прямо на роботах, без постоянного подключения к интернету.

🔍 Что делает эту модель особенной:

🔹 Объединяет универсальность и точность Gemini, но работает локально
🔹 Моделька справляется со сложными задачами с двумя руками (манипуляции, сборка, перенос)
🔹 Обучается новым действиям всего по 50–100 демкам

Модель уже поддерживает разные типы роботов — от гуманоидов до промышленных двухруких манипуляторов. И это несмотря на то, что изначально она была обучена только на датасете ALOHA под управлением человеческих инструкций.

🛠 В догонку выпустили SDK Gemini Robotics — для разработчиков, которые хотят дообучить модель под свои нужды, включая тесты в физическом симуляторе MuJoCo.

🌐 Полностью автономная работа — идеально для кейсов с плохой связью или требованиями к высокой скорости отклика.

Gemini Robotics продолжает двигаться к будущему, где AI становится частью физического мира.

👉 Подробнее: https://goo.gle/gemini-robotics-on-device


@ai_machinelearning_big_data

#ai #robots #vlm #google #Gemini
41👍25🔥10🥰2
🌟 VideoPrism: энкодер, заточенный для понимании видеоконтента.

VideoPrism - базовый визуальный энкодер от Google. Это универсальный инструмент, способный разобраться в самых разных нюансах видеоконтента: от простого распознавания объектов до генерации описаний или ответов на вопросы.

По заявлению создателей, VideoPrism демонстрирует топовые результаты на 31 из 33 общедоступных бенчмарков. В тестах на zero-shot, VideoPrism обошел аналоги в задачах классификации (Kinetics-600) и ответов на вопросы (MSRVTT-QA), даже не используя дополнительных модальностей вроде аудио.

В основе VideoPrism - ViT, но с существенными модификациями, учитывающими специфику видеоданных. В его создании инженеры Google DeepMind применили так называемый "факторизованный" подход, разделяя обработку пространственных и временных измерений и исключили слой глобального усреднения, чтобы сохранить максимум информации из каждого кадра и его временной позиции.

Секрет эффективности VideoPrism кроется в его тщательно продуманном двухэтапном методе обучения на гигантском корпусе данных в 600+ миллионов пар "видео-текст" и чуть менее миллиарда "изображение-текст" из набора данных WebLI:

На первом этапе модель осуществляет своего рода "синхронизацию" между видео- и текстовым энкодерами. Используя огромные массивы пар "видео-текст", они учатся сопоставлять визуальные данные с их семантическими описаниями посредством контрастивного обучения. Это позволяет видеоэнкодеру освоить основные визуальные концепции.

На втором этапе обучение продолжается уже исключительно на видеоданных, применяя усовершенствованную технику маскированного моделирования. Здесь часть видеороликов подвергается маскированию, а VideoPrism должен восстановливать скрытые части.

Token shuffling (предотвращает "копипасту" ошибок декодера) и global-local distillation (перенос знаний из первого этапа), помогают VideoPrism одновременно усваивать детали изображений и тонкости движений, избегая при этом "катастрофического забывания".

▶️В открытом доступе опубликованы 2 версии, Base и Large:

🟢VideoPrism-B, 114М параметров, на базе ViT-B;

🟠VideoPrism-L, 354M параметров, на базе ViT-L.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Набор моделей
🟡Arxiv
🟡Google Collab
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Encoder #VideoPrism #Google #DeepMind
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3313🔥11🥰1
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Теперь официально Google выпустили Gemini CLI - AI-агента для работы в терминале

• Лёгкий и мощный инструмент для разработки в командной строке
• Работает на базе Gemini 2.5 Pro
• Код агента в открытом доступе (Apache 2.0)
• Поддержка контекста в 1 миллион токенов
• Бесплатный тариф: до 60 запросов в минуту и 1000 в день
Привязка к Google Search
• Поддержка MCP
• Интеграция с VS Code (Gemini Code Assist)

Запуск в cli: npx https://github.com/google-gemini/gemini-cli

🔜 Анонс: https://blog.google/technology/developers/introducing-gemini-cli-open-source-ai-agent/
🔜 Github: https://github.com/google-gemini/gemini-cli/

@ai_machinelearning_big_data

#AI #ML #agent #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9872🔥26🥰2❤‍🔥1😁1🌚1🤣1
⚡️ 5Gemma: новая коллекция энкодер-декодер моделей от Google.

Инженеры Google DeepMind решили вдохнуть новую жизнь в классический подход «энкодер-декодер» выпустив семейство моделей T5Gemma.

Главная интрига заключается не в том, что они сделали, а в том, как. Вместо того чтобы обучать модели с нуля, они разработали метод «адаптации»: взяли уже готовую и предобученную модель-декодер Gemma 2 и, по сути, пересобрали ее в двухкомпонентную энкодер-декодерную архитектуру.

Метод открыл дорогу для интересных экспериментов. Например, стало возможно создавать «несбалансированные» модели, комбинируя большой энкодер с маленьким декодером, скажем, 9-миллиардный энкодер и 2-миллиардный декодер.

Такая конфигурация идеальна для задач суммаризации, где глубокое понимание исходного текста (работа энкодера) гораздо важнее, чем генерация сложного и витиеватого ответа (работа декодера). Это дает инженерам гибкий инструмент для тонкой настройки баланса между качеством и скоростью работы.

🟡Но самое важное - прирост в производительности.

На тестах T5Gemma показывает результаты на уровне или даже лучше своих «однокомпонентных» аналогов. Асимметричная модель T5Gemma 9B-2B демонстрирует значительно более высокую точность, чем базовая Gemma 2 2B, но при этом скорость инференса у них почти идентична.

Даже сбалансированная T5Gemma 9B-9B оказывается точнее, чем Gemma 2 9B, при сопоставимой задержке. Это прямое доказательство того, что двухкомпонентная архитектура может быть и умнее, и эффективнее.

T5Gemma показывает впечатляющий рост в задачах, требующих логических рассуждений. Например, на математическом тесте GSM8K модель T5Gemma 9B-9B набирает на 9 баллов больше, чем Gemma 2 9B.

Эффект становится еще более выраженным после инструктивной донастройки. Здесь разрыв в производительности резко увеличивается: на бенчмарке MMLU модель T5Gemma 2B-2B IT опережает аналог Gemma 2 2B IT почти на 12 баллов.

🟡Google выложила в открытый доступ целую линейку чекпойнтов:

🟢T5 (Small, Base, Large, XL) на базе Gemma (2B, 9B);

🟢«Несбалансированную» версию 9B-2B для экспериментов;

🟢Модели с разными целями обучения (PrefixLM для генерации, UL2 для качества представлений).


🔜 Попробовать возможности T5Gemma или настроить их под свои нужды можно с помощью блокнота Colab. Модели также доступны в Vertex AI.


📌Лицензирование: Gemma License.


🟡T5gemma: https://developers.googleblog.com/en/t5gemma/
🟡Статья: https://arxiv.org/abs/2504.06225
🟡Скачать модель: https://huggingface.co/collections/google/t5gemma-686ba262fe290b881d21ec86

@ai_machinelearning_big_data

#AI #ML #T5Gemma #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6840🔥24🤔10🥱5
⚡️ MedGemma: открытые ИИ-модели для медицины от Google.

Google Research продолжают развивать свою линейку специализированных медицинских ИИ-моделей, представив два важных пополнения: MedGemma и MedSigLIP.

Это серьезное пополнение экосистемы открытых и доступных инструментов для здравоохранения. Разработчики предлагают мощные базовые модели, которые можно дообучать и запускать на собственном железе, даже на потребительском GPU.

🟡Флагман релиза MedGemma - 2 мультимодальные модели на 4 и 27 миллиардов параметров на основе Gemma 3.

Младшая, 4-миллиардная версия, показывает себя как один из лучших открытых «малышей» (<8B), а после дообучения достигает SOTA в генерации отчетов по рентгеновским снимкам. В ходе одного из тестов 81% сгенерированных ею заключений были признаны сертифицированными радиологами достаточно точными.

Старшая, на 27 миллиардов, в текстовой версии, на бенчмарке MedQA набрала 87.7%. Это всего на 3 пункта ниже DeepSeek R1, но при этом модель требует в 10 раз меньше ресурсов для инференса.

🟡Глазами для MedGemma служит MedSigLIP - легковесный (всего 400М параметров) энкодер изображений.

Его задача - классификация, поиск и другие задачи со структурированным выходом. Он был создан адаптацией общей модели SigLIP на огромном массиве медицинских данных (от рентгена до гистологии и снимков глазного дна).

🟡Ключевая особенность и MedGemma, и MedSigLIP в том, что при специализации они не растеряли своих общих знаний.

Они по-прежнему понимают немедицинский контекст и умеют работать с разными языками, что подтвердили исследователи из Тайваня, успешно применявшие модель в связке с литературе на традиционном китайском.


📌Лицензирование: Health AI Developer Foundations.


🟡Страница проекта
🟡Набор моделей
🟡Документация
🟡Arxiv
🟡Demo


@ai_machinelearning_big_data

#AI #ML #LLM #MedGemma #MedSigLIP #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
106👍44🔥29🥱6👏5
✔️ Stanford и Google представили Marin — первую полностью открытую LLM, разработанную на JAX

Что делает Marin особенной:
— Полностью открыты не только веса, но показан весь процесс обучения: код, данные, гиперпараметры модели, логи, эксперименты — всё доступно на GitHub
— Модель обучена на 12.7 трлн токенов и в 14 из 19 тестов обошла Llama 3.1 8B
— Лицензия Apache 2.0, всё можно использовать, модифицировать и воспроизводить
— Levanter + JAX обеспечивают bit‑exact повторяемость и масштабируемость на TPU/GPU

Проект позиционируется как открытая лаборатория: каждый эксперимент оформляется через pull request, логируется в WandB, обсуждается в issue и фиксируется в истории репозитория. Даже неудачные эксперименты сохраняются ради прозрачности.

Выпущены две версии:
- Marin‑8B‑Base — сильный base-модель, превосходит Llama 3.1 8B
- Marin‑8B‑Instruct — обучена с помощью SFT, обгоняет OLMo 2, немного уступает Llama 3.1 Tulu

Это не просто открытые веса, а новый стандарт для научных вычислений в эпоху больших моделей.

* JAX — это фреймворк от Google для научных и численных вычислений, особенно популярен в сфере машинного обучения.


**TPU (Tensor Processing Unit) — это специализированный чип от Google, созданный для ускорения AI-задач.


🟠Github: https://github.com/stanford-crfm/marin
🟠Блог: https://developers.googleblog.com/en/stanfords-marin-foundation-model-first-fully-open-model-developed-using-jax/
🟠Гайд: https://docs.jax.dev/en/latest/quickstart.html

@ai_machinelearning_big_data

#ai #ml #tpu #jax #google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥7427👍19🥰2💯2🤔1
🌟 Google LangExtract: библиотека извлечения структуры из любого текста.

LangExtract - опенсорсная python-библиотека с функцией легковесного интерфейса к LLM, которая превращает большие объемы текста в структурированные данные.

🟡 Ключевая особенность LangExtract на фоне других инструментов - точный фокус на источник.

Каждая извлеченная сущность, будь то имя, дата или дозировка лекарства, привязывается к точным символьным смещениям в исходном тексте. Это дает полную прослеживаемость и верифицируемость результата, просто подсветив найденные данные в оригинальном документе. Больше никаких «откуда модель это взяла?».

🟡 Вторая сильная сторона - надежность выходных данных.

Вы определяете желаемый формат вывода с помощью специального представления данных и даете модели несколько примеров . Используя эти примеры, LangExtract следует заданной схеме, задействуя механизм контролируемой генерации, который поддерживается в моделях Gemini. Это гарантирует, что на выходе вы всегда будете получать данные в консистентном, предсказуемом формате.

🟡LangExtract умеет работать с действительно большими объемами.

Библиотека умеет бить текст на чанки, которые обрабатываются параллельно в несколько проходов, каждый из которых фокусируется на более узком контексте.

Для наглядности библиотека умеет генерировать интерактивную и полностью автономную HTML-визуализацию. Это позволяет за считаные минуты перейти от сырого текста к визуальному представлению, где можно исследовать тысячи извлеченных аннотаций.

При этом LangExtract не замыкается на экосистеме Google: он поддерживает гибкую смену LLM-бэкендов, позволяя работать как с облачными моделями, так и с опенсорсными решениями, развернутыми локально.

🟡LangExtract может задействовать "мировые знания" LLM для обогащения данных.

Информация может быть как явной (извлеченной из текста), так и основанной на внутренних знаниях модели. Разумеется, точность таких выведенных данных сильно зависит от возможностей конкретной LLM и качества предоставленных примеров в промпте.

Изначально идеи, заложенные в LangExtract, были применены для извлечения информации из медицинских текстов. Библиотека отлично справляется с идентификацией лекарств, их дозировок и других атрибутов в клинических записях.

Чтобы продемонстрировать возможности инструмента в узкоспециализированной области, Google создал на Hugging Face интерактивное демо RadExtract. В нем показано, как LangExtract может обработать радиологический отчет, написанный свободным текстом, и автоматически преобразовать его ключевые выводы в структурированный формат, подсвечивая важные находки.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🖥Github


@ai_machinelearning_big_data

#AI #ML #LangExtract #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥2512👨‍💻1