Позволяет создать нативные приложенийяпрямо внутри ChatGPT.
Идея простая: теперь не нужно выходить из ChatGPT, чтобы делать привычные вещи.
Можно прямо в чате работать с дизайном в Figma, создавать презентации в Canva, искать жильё на Booking или смотреть курсы на Coursera — всё в одном окне.
Платформа поддерживает авторизацию, оплату и подключение внешних сервисов,
а значит, ChatGPT становится центром, где совмещаются ИИ, приложения и автоматизация задач.
Скоро разработчики (вайбкодеры) смогут добавлять свои приложения и зарабатывать на них через ChatGPT SDK.
По сути это убийца n8n и Zapier.
Это интуитивно понятный**визуальный конструктор**, где можно создавать своих ИИ-агентов без единой строчки кода.
Просто перетаскиваешь блоки, подключаешь MCP и ChatKit — и агент сам ищет файлы, анализирует данные и выполняет задачи.
Инструмент уже доступен всем.
OpenAi умеют в дизайн, должно быть удобно.
Можно уже попробовать: https://platform.openai.com/agent-builder
Вышел из беты, получил интеграцию со Slack и собственный SDK.
На демо агент управлял светом и экраном голосом - без кода.
На презентации заявили, что теперь почти весь их код пишется с помощью Codex
Благодаря Codex разработчики OpenAI стали отправлять на 70% больше pull-request’ов в неделю, чем раньше.
Теперь у кодекса появляется интеграция со Slack и SDK, чтобы разработчики могли встраивать его в свои рабочие процессы.
Прямо в эфире Codex написал код для управления камерой, сам собрал интерфейс и **запустил готовое при
$15 за ввод и $120 за вывод за 1M токенов
Gpt-realtime-mini - на 70% дешевле, подходит для мгновенных ответов и потоковых задач
Можно будет генерировать видео прямо из кода
PS: Agent Builder выглядит действительно интересно - интуитивный, гибкий, инструмент с большим потенциало
м.
А вот насколько полезными окажутся приложения внутри ChatGPT, не особо понятно.
OpenAI не боится экспериментировать.
Они развивают ChatGPT как платформу, ищут
новые варианты захвата рынка и пробуют смелые идеи. Это дорогого стоит.
Их интерфейс просто топ: минимализм, аккуратность, почти в духе Apple. UX - на уровне искусства.
У OpenAI уже более 800 млн активных пользователей в неделю и они обрабатывают 6 миллиардов токенов в минуту!
К концу года число пользователей, похоже, вплотную подойдёт к 1 миллиарду.
Но гонка только начинается.
Google явно готовит ответ - Gemini 3 обещает быть топом. Другие игроки тоже не дремлют.
@ai_machinelearning_big_data
#openai #chatgpt #llm #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍661🔥301❤207🎉178👏104😁77🤔52🤩41🤣15👌13🙈13
Google объявил о запуске новой модели EmbeddingGemma, созданной для работы прямо на устройствах - без подключения к интернету. Модель на 308 миллионов параметров, поддерживает более 100 языков и показывает лучшие результаты среди всех открытых моделей размером до 500 млн параметров по тесту MTEB.
После квантования модель кушает менее 200 МБ оперативной памяти, а генерация эмбеддингов занимает всего около 20 миллисекунд на устройствах с EdgeTPU.
Google внедрил технологию Matryoshka Representation Learning, позволяющую использовать разные размеры векторов - от 768 до 128 - в зависимости от задач и ресурсов устройства. Контекстное окно достигает 2000 токенов.
EmbeddingGemma уже интегрируется с популярными инструментами вроде SentenceTransformers, Llama.cpp, LangChain и Transformers.js, а её веса открыты для использования и коммерческой адаптации.
googleblog
Вышла новая open-source модель Kani-TTS-370M, создающая естественное и выразительное звучание при крайне высокой скорости работы. Модель насчитывает 370 миллионов параметров и оптимизирована под потребительские GPU, включая RTX 3060, где она обеспечивает реальное время генерации речи.
Kani-TTS построена на сочетании NanoCodec и LFM2-350M, что обеспечивает компактность и качество, сравнимое с крупными нейронными TTS-системами. Разработчики использовали современные нейросетевые методы синтеза речи, чтобы добиться максимально естественной интонации и чистоты звучания.
Главный акцент сделан на эффективности и универсальности - модель легко разворачивается локально, подходит для встраивания в ассистентов, игровых персонажей и офлайн-озвучку, не требуя облачных вычислений.
HF
По оценкам Adobe Analytics, объем онлайн-продаж в США в праздничный сезон 2025 года достигнет $253,4 млрд, что на 5,3 % больше, чем в прошлом году. AI-трафик при этом вырастет на 520 %, особенно в последние 10 дней перед Днём благодарения.
Почти половина американцев намерены воспользоваться AI-инструментами: 53 % - для поиска товаров, 40 %- для рекомендаций, 36 % — для поиска выгодных предложений, 30 % — чтобы вдохновиться идеями подарков.
Мобильные устройства останутся доминирующей платформой - 56,1 % транзакций пройдут с телефона. Среди драйверов роста - скидки (среднее снижение цен до 28 %), сервисы «купи сейчас, заплати позже» и активность в соцсетях, чья рекламная отдача вырастет на 51 %.
techcrunch
Модель обучается не на 3D-структурах, а чисто на видео и многовидовых данных, что делает её универсальной и масштабируемой.
Kaleido превосходит все предыдущие генеративные модели в задачах с малым числом видов и впервые достигает качества рендеринга уровня InstantNGP в zero-shot режиме. Это шаг к гибкому world modeling, способному как точно реконструировать реальность, так и дорисовывать недостающие детали.
shikun
OpenAI и AMD объявили масштабное сотрудничество: по условиям соглашения OpenAI развернёт 6 гигаватт графических процессоров AMD, начиная с первой волны - 1 гигаватт Instinct MI450 во второй половине 2026 года.
AMD, чтобы выровнять интересы, выдала OpenAI варрант на 160 млн своих акций, который будет реализован по мере достижения этапов развертывания и роста стоимости компании, что может превратить его в ~10 % долю.
Соглашение может принести AMD десятки миллиардов долларов дохода, а также усилить её позиции на рынке чипов для искусственного интеллекта.
Этот шаг позволяет OpenAI диверсифицировать аппаратные поставки и снизить зависимость от одного производителя, а также закладывает мощную основу для масштабных AI-инфраструктур следующих лет.
openai
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍158🔥36❤26🤩13👏7🎉5💘2
This media is not supported in your browser
VIEW IN TELEGRAM
Jules - это ИИ, который умеет писать код, исправлять ошибки и создавать тесты для ваших проектов.
Он подключается к GitHub или другому репозиторию, анализирует кодовую базу и выполняет задачи, которые вы ему задаёте.
С помощью Jules Tools можно запускать и управлять этим агентом напрямую через терминал, без браузера.
Пример, вводите:
jules remote new --session "fix login bug"
После запуска команда создаёт виртуальную машину, клонирует репозиторий, решает задачу и отправляет pull request с готовым исправлением.
Что интересного:
- Командная строка и API для управления агентом
- Асинхронные задачи и параллельное выполнение
- Скрипты и автоматизация (через CI, cron, pipelines)
- Память и адаптация под ваш стиль кода
- Безопасное хранение ключей и токенов
- Интерактивный интерфейс в терминале (TUI) с отображением статуса задач в реальном времени
TUI-режим напоминает веб-панель, но работает прямо в консоли, позволяя быстро запускать, отслеживать и управлять сессиями.
Jules можно интегрировать с Slack или системами сборки - агент сам создаёт и выполняет задачи, пока вы занимаетесь другими делами.
Если агент сталкивается с проблемой, то приостанавливает работу и запрашивает помощь, а не «угадывает» решение.
Обе утилиты - Jules и Gemini CLI - работают на Gemini 2.5 Pro, но Jules ориентирован на короткие и точные задачи, а Gemini CLI - на длительную совместную работу.
Бесплатная версия позволяет запускать 15 задач в день (до 3 одновременно).
Платные тарифы - $19.99 и $124.99 - дают лимиты до 100 и 300 задач.
Google также планирует добавить поддержку GitLab, Bitbucket и локальных проектов без Git.
@ai_machinelearning_big_data
#Google #Jules #AI #CodingAgent #Gemini25Pro #Automation
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥145👍25❤23🎉12👏7😁6🤩5🥰2🤣2🫡2
Media is too big
VIEW IN TELEGRAM
Создание AI-агентов становится одной из самых востребованных профессий на рынке.
Теперь вы можете научиться этом на курсе.
Курс научит вас реализовывать четыре ключевых паттерна дизайна агентов:
- Reflection - как агент анализирует свои ответы и улучшает их
- Tool use - модель выбирает, какие инструменты использовать (поиск, почта, календарь, код и т.д.)
- **Planning**- ИИ планирует и разбивает задачу на подзадачи
- Multi-agent collaboration - взаимодействие нескольких агентов, как сотрудников в команде
Andrew Ng делает акцент на оценке (evals) и анализе ошибок - ключевых навыках для успешной отладки агентных систем.
В курсе есть практика, где можно создадите deep research-агента, который умеет искать, синтезировать и формировать отчёты, применяя все эти паттерны.
- Все уроки и код на Python
- Очень подробно и пошагало объяснены все вунтренности
- В курсе рассматриваются для самые популярные фреймворками для создания ИИ агентнов
Требование для учащихся - базовые знания Python
@ai_machinelearning_big_data
#AI #AgenticAI #AndrewNg #DeepLearningAI #AIagents
Please open Telegram to view this post
VIEW IN TELEGRAM
🤩185👍44❤27👏16💯9🔥6🎉6🙏5😁2🤬1💘1
Media is too big
VIEW IN TELEGRAM
Мишель Деворе (Michel Devoret), главный научный сотрудник команды Google Quantum AI, стал лауреатом Нобелевской премии по физике 2025 года.
Он разделил награду с Джоном Мартинесом (бывшим сотрудником Google Quantum AI) и Джоном Кларком из Калифорнийского университета в Беркли.
Премия присуждена за исследования макроскопических квантовых эффектов, которые стали фундаментом для создания сверхпроводящих кубитов - ключевой технологии в квантовых компьютерах.
Для Google это исторический момент: теперь в числе сотрудников и выпускников компании уже пять лауреатов Нобелевской премии, включая Демиса Хассабиса и Джеффри Хинтона, отмеченных в 2024 году.
По данным *The Information*, Oracle понесла убытки около $100 млн за прошлый квартал из-за аренды чипов Blackwell.
Маржа серверного проката составила всего около 16%.
Бизнес по аренде GPU оказывается сложным:
скорее всего, дело не в падении спроса, а в сильном давлении на маржу - клиенты активно торгуются и сбивают цены.
theinformation
Модель содержит 8.3 млрд параметров, из которых активно только 1.5 млрд на токен, что даёт качество уровня 3–4B плотных моделей, но при этом она быстрее Qwen3-1.7B.
Модель показала себя отлично на 16 банчмарках:
она обгоняет LFM2-2.6B и модели аналогичного размера, особенно в задачах математики, кода и творческого письма.
huggingface
Deloitte объявила о крупнейшем корпоративном внедрении AI в истории Anthropic - Claude теперь станет рабочим инструментом для 470 000 сотрудников по всему миру.
Компания создаёт отраслевые версии Claude для бухгалтеров и разработчиков, а также откроет Claude Center of Excellence и сертифицирует 15 000 специалистов. В фокусе - прозрачность и соответствие нормам, с опорой на фреймворк Trustworthy AI.
Любопытно, что накануне Deloitte признала, что использовала ИИ в официальном отчёте правительства Австралии, где оказались поддельные цитаты и ссылки, и согласилась вернуть часть контракта на $440 000.
TechCrunch
Пациент Nick Wray стал первым, кто с помощью Neuralink PRIME BCI смог управлять роботизированной рукой напрямую с помощью мозга. Он рассказал, что впервые за многие годы смог сам надеть шляпу, разогреть еду и поесть без помощи.
В проекте участвует и xAI Илонa Маска: система Grok помогает Neuralink усиливать нейроинтерфейс — от преобразования мыслей в текст и ускоренной коммуникации до синтезированного голоса и долгосрочной цели — когнитивного соединения человека и ИИ на бинарном уровне.
Многие задаются вопросом: станет ли Grok 5 шагом к слиянию человеческого сознания и искусственного интеллекта?
Это одно из самых вдохновляющих достижений в истории нейротехнологий — шаг к возвращению физической независимости людям и, возможно, к новой эре взаимодействия человека и ИИ.
Видео
Компания ElevenLabs представила Agent Workflows - инструмент, который позволяет визуально проектировать логику диалогов и взаимодействие агентов на платформе Agents.
Теперь вместо громоздкого единого агента можно создавать Subagents - специализированных подзадачных агентов с собственными промптами, базами знаний и инструментами.
С помощью Workflows можно задавать, когда агент передаёт управление подагенту, а когда подключает человеческого оператора. Это делает систему более гибкой и безопасной.
Кроме того, Workflows обеспечивают надёжное подключение к корпоративным системам, управление бизнес-логикой и умную маршрутизацию диалогов, что помогает снизить затраты, задержки и повысить точность ответов.
elevenlabs
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👏151❤31👍29🎉16🤔6🤩6🙏2🏆2💘1
Модель на 1 трлн, из них ≈ 50 млрд активны на токен (MoE-архитектура).
Она обучена на 20 трлн+ токенов, специально отобранных для задач логического мышления и рассуждений. Контекст: 128 000 токенов.
Построена на базе Evo-CoT (Evolutionary Chain of Thought) и Linguistics-Unit RL - нового метода обучения для масштабируемых рассуждений. При помощи Evo-CoT модель постепенно улучшает баланс между точностью рассуждений и вычислительной эффективностью. То есть с каждым шагом она пытается делать рассуждения «глубже», но не слишком дорого по ресурсам.
Моделька демонстрирует сильные результаты в задачах кода, математики, логики и фронтенд-генерации.
В архитектуре задействованы Mixture-of-Experts (1/32 активация), MTP слои и маршрутизация экспертов.
Ling-1T показывает, что огромные модели можно сделать не только мощными, но и экономичными.
https://huggingface.co/inclusionAI/Ling-1T
@ai_machinelearning_big_data
#Ling1T #AI #ML #OpenSource #Reasoning #TrillionScale #FP8
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍816🤔180❤160🔥147💯121👏97😁69🥰64😐16😢12🤩9
Google готовит полный редизайн Gemini AI: вместо обычного чата появится вертикальная лента, где можно листать визуальные ответы, видео и карточки - как в TikTok.
Аналитики считают, что новый формат повысит вовлечённость пользователей и откроет новые каналы дохода - от подписок до встроенной рекламы.
Bank of America называет обновление «ключевым катализатором роста» и прогнозирует дальнейший рост акций Alphabet.
Gemini уже становится центральным продуктом Google в ИИ, а после мультимодальных функций и визуального интерфейса может догнать или даже обойти ChatGPT.
marketwatch
Финансирование разделено на $7,5 млрд в акциях и до $12,5 млрд долга, оформленных через специальную структуру (SPV), которая будет использоваться для закупки чипов Nvidia.
Сама Nvidia участвует в раунде, инвестируя до $2 млрд в долевую часть сделки - по сути, поставщик чипов финансирует покупателя своих же процессоров.
xAI укрепляет позиции в гонке за вычислительные мощности, а Nvidia ещё глубже встраивается в экономику будущего ИИ.
reuters
Вместо этого они восстановили работу гематоэнцефалического барьера - защитного фильтра между мозгом и кровеносной системой, который обычно разрушается при нейродегенеративных заболеваниях.
Эти наночастицы представляют собой так называемые «супрамолекулярные лекарства», они не просто доставляют действующее вещество, а сами выполняют терапевтическую функцию. Учёные запрограммировали их так, чтобы они имитировали белок LRP1, отвечающий за выведение токсичных амилоидных бета-пептидов (Aβ) из мозга. Когда наночастицы связываются с этим белком, запускается процесс самоочищения и восстановления барьера.
Эксперименты показали, что уже через один час после введения уровень амилоида в мозге животных снизился на 50–60 %. После трёх доз у 12-месячных мышей (эквивалентно людям около 60 лет) к 18-месячному возрасту (примерно 90 лет у человека) полностью восстановились поведенческие функции и животные снова вели себя как молодые.
Пока метод протестирован только на животных, и для применения на людях потребуются дополнительные исследования безопасности и эффективности.
interesting
Новая модель Sora 2 от OpenAI столкнулась с ошибками в работе **guardrails - механизмов, отвечающих за блокировку нежелательного контента.
Модель в некоторых случаях пропускает запрещённые или неуместные материалы, а также ошибочно помечает безопасные запросы как нарушения. Это вызывает вопросы к её готовности для широкого коммерческого использования.
OpenAI уже расследует проблему и уточняет, что сбой связан с «непредвиденными взаимодействиями между мультимодальными фильтрами».
Контроль безопасности для генеративных видео-моделей - куда сложнее, чем для текста. И Sora 2 сейчас становится главным испытанием этой технологии.
404
💰 OpenAI, Nvidia и AMD заключили сделки почти на $1 триллион - создавая замкнутый цикл инвестиций
OpenAI выстраивает сеть сделок с ключевыми игроками индустрии - Nvidia, AMD и Oracle - общим объёмом свыше $1 трлн.
Что происходит:
- Nvidia инвестирует $100 млрд в OpenAI и строит 10 ГВт серверов для её инфраструктуры.
- В ответ OpenAI закупает у AMD 6 ГВт GPU и получает право купить до 10 % акций AMD по символической цене.
- Также OpenAI подписала контракт с Oracle на $300 млрд вычислительных мощностей в рамках проекта Stargate, который развернёт ещё 7 ГВт дата-центров в США.
- Посредник CoreWeave удерживает центр системы: контракты с OpenAI на $22,4 млрд и соглашение с Nvidia на $6,3 млрд облачных мощностей до 2032 года.
Компании фактически создают «замкнутую экосистему», где деньги и поставки ходят по кругу - Nvidia финансирует OpenAI, OpenAI закупает у AMD и Oracle, а те - у Nvidia.
bloomberg
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤53👍21🔥11🗿7😁2🤔2💘2💋1
AI21 представила Jamba 3B - компактную модель, которая обошла Qwen 3 4B и IBM Granite 4 Micro по качеству рассуждений.
Более высокая эффективность, в сравнении с AI21 - 2–5× улучшение в производительности по сравнению с конкурентами за счёт меньшего KV-кэша и гибридной архитектуры.
Секрет в архитектуре:
🔹 сочетание Transformer attention и Mamba state-space слоёв.
🔹 Mamba-часть эффективно обрабатывает длинные последовательности без тяжёлых attention-кэшей,
🔹 а Transformer-слои сохраняют способность к сложным рассуждениям.
Результат, модель кушает меньше памяти, выдает высокую скорость и плавно работает даже на ноутбуках, GPU и мобильных устройствах.
📏 Контекст: до 256K токенов.
⚡ Скорость: около 40 токенов/сек даже на длинных контекстах, тогда как другие модели резко замедляются.
На графике “интеллект против скорости” Jamba 3B опережает Gemma 3 4B, Llama 3.2 3B и Granite 4.0 Micro, демонстрируя высший интеллект и более быструю генерацию.
🟢 Подробнее: huggingface.co/ai21labs/AI21-Jamba-Reasoning-3B
@ai_machinelearning_big_data
#AI #LLM #Jamba3B #AI21 #Mamba #Transformer #DeepLearning
Более высокая эффективность, в сравнении с AI21 - 2–5× улучшение в производительности по сравнению с конкурентами за счёт меньшего KV-кэша и гибридной архитектуры.
Секрет в архитектуре:
🔹 сочетание Transformer attention и Mamba state-space слоёв.
🔹 Mamba-часть эффективно обрабатывает длинные последовательности без тяжёлых attention-кэшей,
🔹 а Transformer-слои сохраняют способность к сложным рассуждениям.
Результат, модель кушает меньше памяти, выдает высокую скорость и плавно работает даже на ноутбуках, GPU и мобильных устройствах.
📏 Контекст: до 256K токенов.
⚡ Скорость: около 40 токенов/сек даже на длинных контекстах, тогда как другие модели резко замедляются.
На графике “интеллект против скорости” Jamba 3B опережает Gemma 3 4B, Llama 3.2 3B и Granite 4.0 Micro, демонстрируя высший интеллект и более быструю генерацию.
@ai_machinelearning_big_data
#AI #LLM #Jamba3B #AI21 #Mamba #Transformer #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤47🔥22👍13🤔4💘2
Media is too big
VIEW IN TELEGRAM
«Единственное, о чём я жалею, что не дал ему больше денег.
Когда речь идёт о проектах, в которых участвует Илон, ты хочешь быть частью этого. Он дал нам шанс инвестировать в xAI и это инвестиция в действительно великое будущее. Это не просто партнёрское финансирование, это вера в идею».
Крупнейшие компании Amazon, Microsoft и Google - управляют бизнесом на несколько триллионов долларов и тратят около сотни миллиадров на инфраструктуру дата-центров.
Но сейчас происходит тектонический сдвиг:
💡 переход от CPU-систем к генеративным AI-платформам на GPU, и этот переход только начинается.
Nvidia уже продала оборудования на сотни миллиардов долларов для этой новой эры,
но на фоне многотриллионного рынка AI-инфраструктуры и это тольео начало пути.
Мир вступает в долгосрочный цикл экспансии инвестиций в ИИ,
Nvidia - в самом центре этого колоссального рынка. 🚀
@ai_machinelearning_big_data
#Nvidia #xAI #ElonMusk #JensenHuang #AI #инвестиции #технологии #GPU
Please open Telegram to view this post
VIEW IN TELEGRAM
👍83❤21🔥21😁8🥱5💘2🐳1
Media is too big
VIEW IN TELEGRAM
Модель GPT-5 Pro заняла первое место среди всех проверенных frontier-LLM на закрытом бенчмарке ARC-AGI Semi-Private. Этот тест оценивает способность моделей к абстрактному рассуждению и решению сложных задач.
Интересно, что GPT-5 Pro всё ещё уступает результатам старого o3-preview, который OpenAI тестировал ещё в декабре прошлого года. Однако тот экспериментальный вариант был почти в 50 раз дороже в вычислительных затратах и никогда не был публично выпущен.
Версия o3-preview (high) достигала впечатляющих 87,5 % точности на ARC-AGI-1, но потребляла 172 раза ресурсов, чем версия (low). Из-за этого она не попала в официальный лидерборд - по правилам, тесты с compute-стоимостью выше $10 000 не публикуются.
GPT-5 Pro является самой мощной из доступных и подтверждённых моделей на Semi-Private ARC-AGI.
В список вошли достижения в самых разных областях: ИИ робототехника, медицина, экология, образование, энергетика и дизайн. Среди ключевых технологий - Claude Sonnet 4 от Anthropic, новая версия ИИ-модели, которая продемонстрировала более точные и безопасные ответы; NVIDIA DGX Spark - «настольный» AI-суперкомпьютер, делающий высокопроизводительные вычисления доступнее; UiPath Agentic Automation, объединяющая работу AI-агентов; и XReal One - компактные AR-очки, приближающие смешанную реальность к массовому использованию.
TIME отметили разработки в области биотехнологий, биопечати тканей, устойчивых источников энергии и переработки отходов. Эти изобретения демонстрируют, как технологии становятся не просто инструментами, а основой будущего образа жизни.
time
Google Cloud опубликовал обновлённый список из корпоративных примеров применения генеративного ИИ, что в 10 раз больше, чем годом ранее. Это показывает, что AI уже массово используется в продакшене по всему миру.
В банках и ритейле Commerzbank ИИ обрабатывает 2 млн клиентских чатов с 70% успешных решений, Best Buy ускоряет анализ отзывов, а Mercedes внедрил голосового ассистента на базе Gemini.
Внутри компаний ИИ автоматизирует рутину: Toyota экономит более 10 000 часов в год, Manipal Hospitals сократил передачу смен с 90 до 20 минут, Equifax - 97% сотрудников хотят сохранить AI-лицензии.
Wayfair ускорил настройку окружений на 55%, CME сэкономил 10,5 часов в месяц, а BMW и UPS используют цифровых двойников для моделирования логистики и производств.
Подробнее
Министр экономики Тайваня заявил, что TSMC сохранит свои самые передовые технологии и основное производство на острове, несмотря на предложение США сделать «50 на 50».
Компания вкладывает $165 млрд в шесть фабрик в США, но строит десять на Тайване и планирует новые - там останутся ведущие технологические узлы.
По словам министра, зарубежные заводы допустимы только при реальных заказах, прибыли и отсутствии рисков для безопасности.
Идея «50-50» возникла из-за стремления США увеличить долю внутренних чипов после кризиса поставок 2020–2021 годов.
Аналитики считают, что перенос производства в США слишком дорог и займёт годы, поэтому Вашингтон делает ставку на «friendshoring» - распределённые цепочки поставок между союзниками.
times
Microsoft представила новую модель UserLM-8B, созданную для симуляции поведения пользователя в диалоге. В отличие от обычных LLM, эта модель генерирует реплики от лица человека, включая уточнения, эмоции и ошибки, как в реальном общении.
Модель построена на базе Llama3.1 8B и дообучена на корпусе WildChat-1M, где она анализировала сотни тысяч реальных и синтетических диалогов. Такой подход позволяет создавать реалистичные сценарии общения для тестирования чат-ботов, обучения ассистентов и генерации синтетических данных.
HF
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤56👏17👍10🔥7