Как работает развёртывание Python-приложений: от запроса до ответа
Зачем нужен gunicorn? А зачем — Nginx? Эти вопросы часто задают разработчики, впервые сталкивающиеся с деплоем Python-приложений. Может показаться, что веб-приложение — это просто код на Flask или Django, который запускается и принимает запросы. Но на практике между пользователем и вашим кодом выстраивается целая цепочка инфраструктурных компонентов, каждый из которых решает важную задачу. На схеме показан путь HTTP-запроса от клиента до конечного обработчика в приложении и обратно.
Accept: принимаем запрос
Когда пользователь открывает ваш сайт, он отправляет HTTP-запрос. Этот запрос в первую очередь встречается с внешним сервером — чаще всего это nginx. Его задача — понять, куда направить запрос: отдать ли статику, переписать URL, направить на конкретное приложение, или вовсе отклонить (например, по причине отсутствия авторизации). Он также может выполнять кэширование, сжатие и защищать от некоторых видов атак. Сюда же можно отнести балансировщики нагрузки и ingress-контроллеры в Kubernetes.
Translate: превращаем байты в Python
Следующий этап — перевод сетевого запроса в то, что понимает ваше Python-приложение. Это задача gunicorn или аналогичных серверов, поддерживающих WSGI (или ASGI, если речь о FastAPI и асинхронных приложениях). gunicorn создаёт рабочие процессы, слушает сокет, принимает соединения от nginx и передаёт их дальше в код Python. Он изолирует логику приложения от низкоуровневой сетевой части и обеспечивает масштабируемость.
Process: бизнес-логика и генерация ответа
Завершающий этап — сам Python-код во фреймворке (Django, Flask, FastAPI и пр.). Здесь выполняются проверки, обращения к БД, формируются HTML-страницы или JSON-ответы. Именно здесь происходит «магия» — добавление ценности, решение задач пользователей и реализация бизнес-логики.
#факт #основы
@zen_of_python
👀 — Если пришлось перечитать три раза
Зачем нужен gunicorn? А зачем — Nginx? Эти вопросы часто задают разработчики, впервые сталкивающиеся с деплоем Python-приложений. Может показаться, что веб-приложение — это просто код на Flask или Django, который запускается и принимает запросы. Но на практике между пользователем и вашим кодом выстраивается целая цепочка инфраструктурных компонентов, каждый из которых решает важную задачу. На схеме показан путь HTTP-запроса от клиента до конечного обработчика в приложении и обратно.
Accept: принимаем запрос
Когда пользователь открывает ваш сайт, он отправляет HTTP-запрос. Этот запрос в первую очередь встречается с внешним сервером — чаще всего это nginx. Его задача — понять, куда направить запрос: отдать ли статику, переписать URL, направить на конкретное приложение, или вовсе отклонить (например, по причине отсутствия авторизации). Он также может выполнять кэширование, сжатие и защищать от некоторых видов атак. Сюда же можно отнести балансировщики нагрузки и ingress-контроллеры в Kubernetes.
Translate: превращаем байты в Python
Следующий этап — перевод сетевого запроса в то, что понимает ваше Python-приложение. Это задача gunicorn или аналогичных серверов, поддерживающих WSGI (или ASGI, если речь о FastAPI и асинхронных приложениях). gunicorn создаёт рабочие процессы, слушает сокет, принимает соединения от nginx и передаёт их дальше в код Python. Он изолирует логику приложения от низкоуровневой сетевой части и обеспечивает масштабируемость.
Process: бизнес-логика и генерация ответа
Завершающий этап — сам Python-код во фреймворке (Django, Flask, FastAPI и пр.). Здесь выполняются проверки, обращения к БД, формируются HTML-страницы или JSON-ответы. Именно здесь происходит «магия» — добавление ценности, решение задач пользователей и реализация бизнес-логики.
#факт #основы
@zen_of_python
👀 — Если пришлось перечитать три раза
👀6
Сломал ногу — выучил Python: как ИИ помог экс-консультанту стать программистом за 100 дней
38-летний Эрик Леннрот после травмы решил изменить карьеру и выбрал Python, пройдя бесплатные курсы CS50 от Гарварда. С помощью ChatGPT он писал псевдокод, получал обратную связь и вручную набирал код. Его первый проект стал основой для более сложного веб-приложения из 25К строк кода. И о чудо! через три месяца он получил оффер в консалтинговой компании в Лондоне, где заменил Excel на автоматизированные пайплайны. Обучение обошлось ему в $120 (подписки на Claude Pro и Cursor).
#факт
@zen_of_python
38-летний Эрик Леннрот после травмы решил изменить карьеру и выбрал Python, пройдя бесплатные курсы CS50 от Гарварда. С помощью ChatGPT он писал псевдокод, получал обратную связь и вручную набирал код. Его первый проект стал основой для более сложного веб-приложения из 25К строк кода. И о чудо! через три месяца он получил оффер в консалтинговой компании в Лондоне, где заменил Excel на автоматизированные пайплайны. Обучение обошлось ему в $120 (подписки на Claude Pro и Cursor).
#факт
@zen_of_python
✍4❤2
Новый инструмент для отладки асинхронных процессов
С выходом Python 3.14 beta 2 появился новый CLI-инструмент для инспекции асинхронных задач:
Команда выводит табличный список активных корутин с их именами, стеком и зависимостями.
Сферы применения
— Telegram-боты;
— aiohttp и другие HTTP-серверах;
— await‑запросы к БД.
Теперь нет нужды вставлять логи или использовать профайлеры — диагностика идет вживую и позволит увидеть:
— какие запросы обрабатываются дольше всего;
— какие «вешают» бота;
— какие запросы ожидают своей очереди.
Документация
#факт
@zen_of_python
С выходом Python 3.14 beta 2 появился новый CLI-инструмент для инспекции асинхронных задач:
python -m asyncio ps 12345 # Табличный список задач для процесса с PID 12345
python -m asyncio pstree 12345 # Древовидное отображение взаимозависимых корутин
Команда выводит табличный список активных корутин с их именами, стеком и зависимостями.
Сферы применения
— Telegram-боты;
— aiohttp и другие HTTP-серверах;
— await‑запросы к БД.
Теперь нет нужды вставлять логи или использовать профайлеры — диагностика идет вживую и позволит увидеть:
— какие запросы обрабатываются дольше всего;
— какие «вешают» бота;
— какие запросы ожидают своей очереди.
Документация
#факт
@zen_of_python
Python.org
Python Release Python 3.14.0b2
The official home of the Python Programming Language
❤8🔥5
Джависткие Virtual Threads в Python
На официальном форуме Python не на шутку разогнали тред про виртуальные потоки. Идея похожа на OpenJDK Project Loom: такое не потребляет много ресурса.
Предлагается создать соответствующее API, чтобы эффективно выполнять большое количество конкурентных задач. Посмотрим, выживет ли идея.
#факт
@zen_of_python
На официальном форуме Python не на шутку разогнали тред про виртуальные потоки. Идея похожа на OpenJDK Project Loom: такое не потребляет много ресурса.
Предлагается создать соответствующее API, чтобы эффективно выполнять большое количество конкурентных задач. Посмотрим, выживет ли идея.
#факт
@zen_of_python
👀1🗿1
Django 20 лет!
Если вы сегодня выпьете, ваша женщина не имеет право осудить вас: такие юбилеи бывают нечасто. Соавтор фреймворка Саймон Виллисон поделился историей проекта в своем блоге. Он также признался, что совсем не умеет доводить идеи до ума. Их накопилось так много, что даже пришлось выуживать из Internet Archive.
Теперь можно проводить тест на возраст «А ты помнишь первую версию фреймворка?"
#факт
@zen_of_python
🍾 — Если за такое не грех и бутылочку откупорить
Если вы сегодня выпьете, ваша женщина не имеет право осудить вас: такие юбилеи бывают нечасто. Соавтор фреймворка Саймон Виллисон поделился историей проекта в своем блоге. Он также признался, что совсем не умеет доводить идеи до ума. Их накопилось так много, что даже пришлось выуживать из Internet Archive.
Теперь можно проводить тест на возраст «А ты помнишь первую версию фреймворка?"
#факт
@zen_of_python
🍾 — Если за такое не грех и бутылочку откупорить
🍾21❤1
Вышел Python 3.14 RC1: релиз-кандидат с ускоренным интерпретатором
Вышел первый релиз-кандидат Python 3.14 — финальный релиз ожидается в октябре. Среди главных новинок:
— JIT-компилятор теперь работает не только на Linux, но и на macOS и Windows;
— Благодаря PEP 779 Python получает полную поддержку свободных потоков — это шаг к более эффективной многопоточности;
— Появились t-строки — новый синтаксис для шаблонов с переменными прямо внутри строк
— Добавлен модуль
#факт
@zen_of_python
Вышел первый релиз-кандидат Python 3.14 — финальный релиз ожидается в октябре. Среди главных новинок:
— JIT-компилятор теперь работает не только на Linux, но и на macOS и Windows;
— Благодаря PEP 779 Python получает полную поддержку свободных потоков — это шаг к более эффективной многопоточности;
— Появились t-строки — новый синтаксис для шаблонов с переменными прямо внутри строк
— Добавлен модуль
compression.zstd для работы с алгоритмом Zstandard прямо «из коробки» и многое другое.#факт
@zen_of_python
❤🔥5🔥4❤3
Будущее Python: какие тренды развития и боли языка
На PyCon 2025 подробно обсудили ключевые тренды:
— продолжающееся доминирование в области ИИ и анализа данных благодаря Pandas, NumPy, TensorFlow, PyTorch, HuggingFace и новой системе RAPIDS;
— рост популярности асинхронных фреймворков и инструментов вроде FastAPI;
— внедрение в сферу IoT — благодаря MicroPython / CircuitPython для систем умного дома.
— продвижение JIT‑компиляции и Tail Calls.
#факт
@zen_of_python
На PyCon 2025 подробно обсудили ключевые тренды:
— продолжающееся доминирование в области ИИ и анализа данных благодаря Pandas, NumPy, TensorFlow, PyTorch, HuggingFace и новой системе RAPIDS;
— рост популярности асинхронных фреймворков и инструментов вроде FastAPI;
— внедрение в сферу IoT — благодаря MicroPython / CircuitPython для систем умного дома.
— продвижение JIT‑компиляции и Tail Calls.
#факт
@zen_of_python
❤2🆒2
Data Engineering Landscape
Просить собрать вас бинго не буду, но так в 2025 году выглядит подборка топовых продуктов по 11 категориям.
А что бы вы сюда добавили из наших, импортозамещающих продуктов? Как минимум ClickHouse напрашивается.
#факт
@zen_of_python
Просить собрать вас бинго не буду, но так в 2025 году выглядит подборка топовых продуктов по 11 категориям.
А что бы вы сюда добавили из наших, импортозамещающих продуктов? Как минимум ClickHouse напрашивается.
#факт
@zen_of_python
🔥2🗿1