Proglib.academy | IT-курсы
3.74K subscribers
2.09K photos
71 videos
14 files
1.95K links
Онлайн-курсы для программистов от создателей «Библиотеки программиста».

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/9f60aed6

Для обратной связи: @proglibrary_feeedback_bot
Download Telegram
Какие вы знаете автоматические способы обнаружения выбросов в датасете?

Вот несколько подходов:

▪️Isolation forest

Метод базируется на алгоритме случайного леса. Его основная идея заключается в том, что выбросы легче изолировать от остальных данных, чем нормальные объекты. В процессе работы алгоритм строит деревья, случайно разделяя данные. Выбросы, как правило, изолируются за меньшее число шагов. В результате каждому объекту присваивается скор от 0 до 1, где значения, близкие к 1, указывают на возможные выбросы, а значения, близкие к 0, означают нормальные данные.

▪️Local Outlier Factor (LOF)

Этот метод оценивает, насколько плотно объект окружен своими соседями по сравнению с плотностью соседей вокруг других объектов. Если плотность точки значительно меньше, чем у её соседей, то точка считается выбросом.

▪️Расстояние Махаланобиса

Этот метод измеряет расстояние между точкой и средним значением распределения, принимая во внимание ковариацию данных. Точки, находящиеся далеко от центра распределения, но с учётом их корреляции с другими признаками, могут быть идентифицированы как выбросы.

#машинное_обучение
#данные
👍1
This media is not supported in your browser
VIEW IN TELEGRAM
📊 Нужны ли дополнительные данные для модели

Если производительность модели почти не улучшается, несмотря на feature engineering и смену моделей, возможно, данных недостаточно.

Но сбор новых данных — это трудоёмко. Вот как проверить, помогут ли они:
1. Разделите обучающую выборку на k равных частей (7–12 обычно достаточно).
2. Поочерёдно обучайте модель: на 1 части, затем на 2, затем на 3, и так далее.
3. Оцените каждую модель на валидационной выборке.
4. Постройте график, который покажет зависимость производительности от объема данных.

📈 Линия растёт? Добавление данных улучшит модель.
📉 Линия стабильна? Собранные данные исчерпали потенциал.

Простой способ избежать лишней работы!

#данные #modeloptimization
👍1🤔1
This media is not supported in your browser
VIEW IN TELEGRAM
📊 Нужны ли дополнительные данные для модели

Если производительность модели почти не улучшается, несмотря на feature engineering и смену моделей, возможно, данных недостаточно.

Но сбор новых данных — это трудоёмко. Вот как проверить, помогут ли они:
1. Разделите обучающую выборку на k равных частей (7–12 обычно достаточно).
2. Поочерёдно обучайте модель: на 1 части, затем на 2, затем на 3, и так далее.
3. Оцените каждую модель на валидационной выборке.
4. Постройте график, который покажет зависимость производительности от объема данных.

📈 Линия растёт? Добавление данных улучшит модель.
📉 Линия стабильна? Собранные данные исчерпали потенциал.

Простой способ избежать лишней работы!

#данные #modeloptimization
1😁1