Proglib.academy | IT-курсы
3.74K subscribers
2.09K photos
71 videos
14 files
1.96K links
Онлайн-курсы для программистов от создателей «Библиотеки программиста».

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/9f60aed6

Для обратной связи: @proglibrary_feeedback_bot
Download Telegram
✍️ Воскресный разбор задач

Сегодня разберём вопрос про зависимость смещения и дисперсии от параметра lambda в линейной регрессии с регуляризацией.

🔹Регуляризация — это способ добавить к модели дополнительное ограничение на вектор весов. Обычно для этого используются L1- и L2-нормы. Их смысл заключается в добавлении к формуле линейной регрессии регуляризационного члена, который состоит из суммы весов, умноженной на lambda — коэффициент регуляризации.

Нетрудно догадаться, что lambda довольно сильно влияет на качество итогового решения. Если этот параметр, например, равен 1, то мы не прибавляем к формуле ничего кроме суммы весов, а если он равен 10, то прибавка, соответственно, становится десятикратной суммой весов.

👀 А теперь, держа это знание в голове, подумаем: что будет со смещением и дисперсией, когда мы увеличиваем lambda?

Напомним, смещение — это матожидание разности между истинным значением и тем, что было выдано моделью. Дисперсия — это разброс ответов модели, то есть мера того, насколько эти ответы варьируются в зависимости от данных.

Если мы прибавляем к ответу модели сумму весов, да ещё и умноженную на 10, то матожидание между этим ответом и истинным значением, конечно, станет больше. То есть смещение увеличится. Но при этом модель будет, вероятно, лучше обобщать данные, и её дисперсия уменьшится. Поэтому стоит помнить, что что слишком большое значение lambda может привести к тому, что модель начнёт недообучаться.

#разбор_задач